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This paper presents a multi-objective optimization framework for improving 

internal combustion engine performance in hybrid electric vehicles, 

specifically targeting the minimization of fuel consumption and emissions 

(CO, NOx, HC, PM). The proposed method integrates normalized objective 

functions with weighted factors to develop a unified performance index, 

facilitating the simultaneous optimization of multiple conflicting objectives. 

Utilizing the NSGA-II algorithm, a diverse set of Pareto optimal points is 

generated, each representing different trade-offs between the objectives. The 

study’s results demonstrate significant improvements in engine performance 

through the application of the unified ICE operation map, showcasing a 

notable reduction in emissions with only a slight increase in fuel 

consumption. The methodology was validated via MATLAB simulations on 

two case studies involving parallel and series hybrid electric vehicles, 

employing a custom synthesized drive cycle for energy management strategy 

evaluation. The unified map enabled real-time control and efficiency 

improvements by balancing different emission parameters, thus optimizing 

ICE operation across various conditions. 

Key words: internal combustion engine; engine optimization; hybrid electric 

vehicle; multi-objective optimization; fuel economy; pollutant emission 

1. Introduction 

Pollutant emissions from traffic are a growing environmental concern. The transportation sector 

accounts for approximately 20% of global energy consumption and is responsible for nearly 25% of 

global energy-related CO2 emissions, with 75% of these emissions coming from road transport [1,2]. 

This trend is escalating due to economic and population growth. Concurrently, exposure to poor air 

quality remains a significant public health concern worldwide [3]. 

Various initiatives have aimed to enhance fuel efficiency and curb emissions from vehicles, 

including the implementation of more stringent automotive emission standards [4]. As demand for fuel 

rises and environmental regulations on exhaust emissions become more stringent, innovative solutions 

in transportation are imperative. These solutions include advancements in engine and vehicle 

technologies, improved fuel quality, and the adoption of renewable fuels. One prominent innovation in 

transportation systems is hybrid electric vehicles (HEVs), offering a blend of internal combustion 

engine (ICE) and electric vehicle (EV) characteristics, providing the potential to incorporate the best 

design features of both technologies while significantly improving fuel consumption [5–7]. While 
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HEVs do combine the benefits of both ICE vehicles and EVs, the complexity of their powertrain 

necessitates sophisticated power control strategies. These strategies aim to enhance operational 

efficiency, fuel economy, and reduce exhaust emissions. To fully leverage the advantages of HEVs, 

effective energy management strategies (EMS) must be developed and implemented which poses a 

significant challenge [8,9]. 

Although the environmental issues have received substantial attention, much of the existing 

literature on EMS predominantly focuses on minimizing fuel consumption while overlooking 

emissions [10–16]. Only a few studies address exhaust emissions directly. For instance, in Ref. [17], 

an optimization framework was developed with two objective functions: drivetrain cost as the primary 

objective and a weighted combination of equivalent fuel consumption and exhaust emissions as the 

secondary objective. This formulation included separate components for fuel consumption, CO 

emissions, and NOx and HC emissions. A fuzzy logic algorithm was employed for effective EMS, 

using simulation with the ADVISOR software. Similarly, in Ref. [18] a fuzzy logic controller was 

utilized, optimized by a genetic algorithm, to minimize fuel consumption and emissions in a 

predefined HEV configuration. In Ref. [19] ICE torque is parameterized as a sum of radial basis 

functions, enabling smooth input signals while analytically capturing transient dynamics to minimize 

fuel consumption and pollutant emissions efficiently. Meanwhile, Refs. [20] and [21] applied particle 

swarm optimization methods for component sizing, considering both fuel economy and exhaust 

emissions. In Ref. [22], a Pareto-based analysis was conducted to assess the impact of motor/generator 

and battery size on fuel consumption and CO2 emissions. Additionally, Ref. [23] proposed an energy 

flow control strategy based on genetic algorithm theory to minimize a weighted objective function, 

effectively reducing exhaust pollutants. In Ref. [24] a hybrid EMS for a series-parallel PHEV was 

introduced, combining a rule-based control strategy with genetic algorithm based optimization to 

enhance fuel economy, reduce HC and NOx emissions, and address battery limitations. Using a 

mathematical model verified through simulation in the MATLAB/Simulink environment, the proposed 

method achieved significant performance improvements. 

Despite the pressing nature of pollutant emissions calls for environmental protection, a limited 

number of studies have focused on reducing exhaust emissions. Those that did often concentrated on 

specific emissions like CO2 [22] or on component sizing without deeper analysis of ICE operation, 

which is the primary source of fuel consumption and exhaust emissions. These studies missed the 

opportunity offered by HEVs to downsize ICE while maintaining adequate power at the wheels [25], 

as well as optimizing engine operation by ensuring it runs within efficient regions with support from 

the electric motor. Research indicates that optimizing engine operation is crucial for reducing 

emissions and fuel consumption, as ICE parameters have the most significant impact on overall 

powertrain efficiency [26,27]. Failure to deeply analyze engine operation can lead to sub-optimal 

results, especially taking into account that research has shown that HEVs showed no reduction in HC 

emissions and consistently higher CO emissions compared to the conventional ICE vehicles [5]. 

Additionally, studies have shown that achieving lower emissions and consumption often results in 

higher powertrain costs [17], underscoring the need to address both fuel consumption and exhaust 

emissions in predefined hybrid powertrain configurations to optimize performance cost-effectively. 

Based on these considerations, the motivation for this research stems from the critical need to 

develop an EMS that minimizes a cost function considering both fuel consumption and emissions 

across various torque and speed values. This approach aims to establish a unified ICE operating map 
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and an optimal operating line (OOL) to guide efficient vehicle operation in a computationally efficient 

and real-time implementable manner. This can be applied to any predefined HEV configuration or 

existing EMS, optimizing engine operation without the need to redesign or resize components in the 

powertrain. 

In this research, a unified ICE map was developed and applied to enhance the performance of 

HEVs across two case studies, illustrating the algorithm's effectiveness. For a selected Pareto solution, 

when implemented in existing EMSs, a significant reduction in pollutant emissions of approximately 

30% was achieved, with a corresponding slight increase in fuel consumption of around 3% to 5%. 

Other Pareto solutions can be chosen based on individual criteria, allowing for different outcomes in 

fuel consumption while maintaining balanced trade-offs. 

 

2. ICE unified map and optimal operation line derivation 

HEVs have a complex powertrain consisting of at least one electric motor in addition to the 

ICE. Different configurations of HEV powertrains, offer varying degrees of flexibility in adjusting the 

operating point of the ICE. 

In series-parallel configurations, optimal working point strategies leverage electric motor (EM) 

to provide additional power, taking advantage of the favorable torque-speed characteristics of the EM 

while ensuring that the ICE operates at its optimal point [6]. The engine optimal operation line 

strategy employs a power-following approach, where the ICE consistently operates along its optimal 

operation line unless the required current exceeds battery or EM limits [28]. Another approach, known 

as the engine optimal efficiency approach, focusing on maintaining the ICE within its optimal 

efficiency region while concurrently maximizing transmission efficiency. This strategy aims to 

achieve a system optimal operation by harmonizing the performance of the ICE with transmission 

efficiency considerations [29].  

In the context of series hybrid configurations, two EMSs have been proposed for hybrid electric 

bulldozers. In Ref. [30] an adaptive smooth power following control strategy based on an optimal 

efficiency map was introduced. This strategy employs a fuzzy logic controller to automatically adjust 

output power, optimizing state of charge (SOC) within a permissive range, outperforming typical 

power-follower control strategies. Additionaly, an engine multipoint speed switching control strategy 

for hybrid electric tracked bulldozers was proposed in Ref. [31]. This strategy dynamically selects 

predefined operating points for the engine based on demand power, enhancing efficiency and 

performance in practical applications which is validated with the hardware-in-the-loop test bench. In 

parallel configurations, the electric assist control strategy stands out as a commonly used rule-based 

approach aimed at improving engine efficiency through a power-following mechanism [13,18,32,33]. 

Notably, there is limited published research on alternative strategies in this context. One notable 

exception is a study employing torque leveling, albeit specifically for a through-the-road HEV [34]. 

None of these papers, with the exception of Refs. [33] and [32], have included emissions as a 

metric of their EMS success, focusing solely on fuel consumption. Furthermore, both of these studies 

concentrate on the optimization of EMS, which is questionable from the standpoint of real-time 

implementation due to the complexity of multi-objective optimization. Additionally, Ref. [32] clearly 

notes that the choice of weighting factors significantly influences the optimization results, as the 
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objectives of fuel consumption and emissions are inherently different and not easily scalable against 

each other.  

For these reasons, this paper adopts a different approach to optimization. The optimization is 

conducted offline by analyzing and creating a unified optimal ICE map and then deriving the optimal 

operating line. This line is subsequently fed to the EMS as a control map, which has been proven to be 

a fast and easily implementable real-time solution [35]. 

 

2.1. Problem description 

As previously noted, existing research has primarily emphasized improving fuel economy rather 

than addressing emissions. However, operating the ICE in the fuel-optimal area does not necessarily 

ensure low emissions, and vice versa. Depending on the observed ICE, optimal performance maps 

may exhibit distinct sections highlighting trade-offs between fuel consumption (FC) and emissions 

such as carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC) and particulate matter 

(PM). For example, Figure 1 and Figure 2 illustrate the fuel and emission maps for a Caterpillar 3126E 

Turbo Diesel Engine, with detailed measurement data obtained from ADVISOR [36]. 

 

 

Figure 1. Trade-off between fuel economy and emissions 

 

The data for this ICE was obtained from the Caterpillar 3126E engine specification sheet and 

through testing conducted using the European Stationary Cycle (ESC). This data includes fuel 

consumption and emissions metrics (NOx, CO, and HC) across 13 operating points. The data are fully 

available in ADVISOR and have been selected as a benchmark case study for optimization and 

presentation in this paper. Key ICE parameters are listed in Table 1. 

 

Table 1. Overview of key parameters of Caterpillar 3126E ICE 

Parameter Value 

Maximum power 205 kW @ 2200 rpm 

Maximum torque 1085 Nm 

Displacement 7.2 l 

Bore 110 mm 

Stroke 127 mm 
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Figure 2. Hot (90
o
 of coolant), steady-state maps of the ICE 

 

This unified map can be visualized as a grid with respect to ICE speed and torque, as 

illustrated in Figure 3. Each (i, j) pair in the unified ICE operating map is associated with multiple 

objectives, each representing a distinct aspect of engine performance such as fuel consumption and 

emissions of CO, HC, and NOx. These objectives are combined into a single performance metric 

named ICE performance index (PI). The way to conduct this is to derive a single-objective function 

from multiple objectives by introducing 

weighting factors. Before initiating optimization, 

the objective functions are normalized to a 

common non-dimensional scale in the range 

between 0 and 1 using the following expression: 

 
    

           

                
 (1) 

where    and    are normalized map and 

original map respectively, and   

              . This normalization step ensures 

that all objectives are placed on a comparable scale, 

preventing any single objective from dominating the optimization process due to differences in scale. 

After implementing weight factors, the PI is derived as: 

                                                  (2) 

Figure 3. Unified ICE map grid 
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where                 and     
 are normalized ICE fuel consumption and emissions respectively, 

while and        are corresponding weight factors.  

Note that additional ICE objectives, such as PM emissions or other, can also be included in the 

PI derivation without any change in the optimization procedure. Obviously, this method involves the 

sum of weighted functions approach to determine the optimum operation point of the ICE, a technique 

often used due to its simplicity and ease of implementation. However, it has been shown that this 

method does not provide satisfactory results, 

especially in non-convex spaces, and the 

outcome is highly sensitive to the chosen 

weights [33,37]. This issue is further 

emphasized in this paper, as the normalized 

parameters are summed at their corresponding 

positions in the ICE map grid (i,j), where the 

singular numerical value of each parameter is 

constant. The only variable is the weighting 

factor, and optimizing this is the core of the 

problem. Therefore, it is not viable to 

randomly select weights or to choose them 

based on previous experience or knowledge. Additionally, this approach may result in one solution 

dominating over others. Although normalization achieves the same scale, the parameters remain 

incommensurable, and this approach does not account for the distribution and grouping of values on 

that scale. For example, 90% of the values of one parameter may be grouped in the [0, 0.05] region of 

the scale, while another parameter has 90% of its values in the [0.8, 0.9] region. To address this issue, 

the concept of Pareto optimal solutions is employed in multi-objective optimization. Using this 

method, a set of Pareto optimal points is obtained, where any improvement in one objective inevitably 

leads to deterioration in at least one other objective, as illustrated in Figure 4. The problem is 

formulated as a multi-objective optimization task, seeking to identify a set of weights (or decisions) 

that optimize multiple conflicting objectives concurrently. To achieve this, an objective vector is 

defined to represent the different performance measures or criteria that are intended to be optimized 

simultaneously. This objective vector can be expressed as: 

   [                                      
] 

              ∑   

 

   

         

                                  

(3) 

The aim is not to combine objectives into a single metric but to explore the trade-offs between 

them, as improving one objective might lead to degradation in others. In this context weights are used 

in auxiliary capacity, using them to transform the multi-objective problem into a series of single-

objective problems. By assigning different weights to each objective, a set of solutions is generated 

that span the trade-off space. This optimization approach approximates a Pareto front by progressively 

increasing the number of solutions, allowing it to incrementally ’learn’ the shape of the Pareto front 

and concentrate computational effort where new information can be most effectively obtained. By 

adaptively determining where to refine further, this approach produces well-distributed solutions. 

Figure 4. Pareto frontier illustration 
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Specifically, for each position in the engine map grid, the approach optimizes the objective vector, 

seeking a single set of weights that delivers the optimal engine operation across the entire grid. 

Secondly, the use of weights enables parameter sensitivity analysis, allowing for the assessment of 

how changes in one parameter affect others. This approach facilitates the exploration of different 

regions within the objective space and the evaluation of trade-offs among conflicting objectives. 

Different combinations of weights yield distinct sets of Pareto-optimal solutions, providing insights 

into trade-offs and supporting informed decision-making in the EMS design process. Ultimately, these 

weighted objectives offer a means to prioritize goals and navigate the complex landscape of 

performance metrics, assisting in the identification of solutions that best align with desired preferences 

and constraints. This approach enables engineers to make informed choices and optimize engine 

management strategies effectively. 

Going into the optimization, the following assumptions have been made: 

 Data Normalization: It is assumed that the engine map data (fuel consumption, CO, HC, and 

NOx emissions) is provided in a consistent format and has already been cleaned and pre-

processed. The data is normalized to the range [0, 1] for each objective to ensure 

comparability across different units and scales. 

 Fixed Engine Map Dimensions: The engine maps used in the optimization are assumed to 

have fixed dimensions. This structure is consistent across all objectives. 

 Linear Combination of Objectives: It is assumed that the weighted sum of the normalized 

objective maps is a reasonable representation of the combined impact of these objectives on 

engine operation. The optimization assumes that the weights directly influence the combined 

emissions and fuel consumption. 

 Uniform Weighting: The weights for the objectives are assumed to be bounded between 0 

and 1, and they must sum to 1. This assumption ensures that the total contribution of all 

objectives remains consistent during the optimization. 

2.2. Optimization algorithm 

 

For solving the optimization problem, the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) is used. NSGA-II is a popular evolutionary algorithm designed to explore and identify 

Pareto-optimal solutions efficiently. It is versatile and can be applied to a range of problems, including 

the optimization of ICE operation [38]. It operates by maintaining a population of candidate solutions, 

referred to as individuals, and iteratively evolves this population through genetic operations including 

selection, crossover, and mutation. The entire optimization procedure, incorporating this evolutionary 

process, is depicted in Figure 5. The NSGA-II algorithm places a strong emphasis on maintaining 

diversity among solutions within the population. It ranks these solutions based on dominance 

relationships, aiming to approximate the Pareto front - the set of non-dominated solutions representing 

optimal trade-offs between conflicting objectives. 

Through this approach, a Pareto front was identified, illustrating the trade-off surface where 

improving one objective results in the deterioration of at least one other objective (see Figure 4). The 

Pareto front showcases a range of optimal compromises, offering valuable insights for selecting 

among trade-offs based on preferences and priorities. Given that multiple Pareto solutions are 

generated, it becomes necessary to choose an optimal solution for further analysis. In this study, the 
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selection of a Pareto optimal solution is based on its distance from the origin (0,0,0,0) in the 4D 

objective space: 

   √            (4) 

where   is the Euclidean distance from the origin, while           and    are the respective objective 

values in the 4D space. 

Figure 5. Flowchart of the optimization procedure for creation of unified ICE map 

 

By calculating the Euclidean distance from the origin for each Pareto solution, the aim is to identify a 

solution that is relatively close to the origin, indicating a balanced compromise across all objectives. 

Consequently, the solution with the smallest distance to the origin is selected, representing a favorable 

balance among all objectives. This selected Pareto solution for the Caterpillar 3126E diesel engine is 

highlighted in red in Figure 6, illustrating its position in the multi-dimensional objective space and its 

proximity to the origin as an indicator of balance across the objectives. 

 

Figure 6. Plots of the Pareto front in 3D (middle) and 2D projections (views of the Pareto front 

when rotated around the relevance-axis with two different viewing angles in both columns) 
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Selecting the Pareto solution closest to the origin provides a mathematically objective and 

balanced method for identifying a compromise among all objectives. However, since the optimization 

is conducted offline, each Pareto solution can be examined individually. This allows for a more 

detailed evaluation of fuel consumption and emissions, facilitating the selection of the Pareto solution 

that best meets the desired criteria or outcomes. 

2.3. Optimal operating line 

 

After obtaining weights values from the pareto solutions, a unified ICE operation map can be 

obtained with a unique unified performance index, as illustrated in the Figure 7. With the unified ICE 

operation map constructed, the OOL can now be devised. The OOL can be established depending on 

the desired control input. If torque is the control 

input, the OOL is devised such that, for each 

speed in the ICE map grid, it connects grid points 

with the lowest PI. Conversely, if speed is the 

control input, the process is reversed. However, if 

ICE power is the control input, an isopower curve 

is determined within the bounds of the grid, and 

then the point with the minimum PI for all points 

on the grid can be easily obtained. These OOLs, 

obtained in these ways, are illustrated in Figure 8. 

The unified ICE map and the devised optimal 

operating lines can further aid in designing EMS. 

These can be used in rule-based strategies to guide the placement of the engine operating point for 

various driving conditions or in efficiency maximization strategies using maps [35]. Notably, the 

unified engine operation map is entirely precalculated and readily available, making it easy to read and 

implement in real time. This unified map enables real-time control and efficiency improvements by 

balancing different emission parameters, as demonstrated in the next section. 

Figure 7. Unified ICE operation map 
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Figure 8. Optimal operation line (a) for speed input, (b) for torque input and (c) for power input 

 The OOLs are derived by identifying points with the lowest PI for a given input. In practical 

terms, depending on the configuration and EMS for HEVs, one of these OOLs can be applied. For 

instance, in a speed-coupled ICE and electric motor system (via a planetary gearset), torque is 

determined while the ICE speed can vary within the range of the electric motor’s speed. In this case, 

the OOL for speed input can serve as an input for the EMS, allowing the optimal ICE speed to be 

quickly identified. If this speed is not achievable, the ICE will operate at the closest possible speed. A 

similar approach applies for torque coupling. When power is the input, such as in series HEVs, an 

optimal torque-speed pair can be selected based on the pre-calculated OOLs determined for every 

power value.  

These OOLs, presented here, are derived based on the most balanced trade-offs for optimizing 

ICE operation. The weight of specific objectives can be adjusted as needed to reflect varying 

priorities. It is important to note that the entire unified ICE operation map can be stored in the EMS; 

however, depending on the data resolution, this map may prove computationally expensive. 
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3. Simulation results and analysis 

To validate the proposed method for creating a unified ICE operation map, a simulation in 

MATLAB was conducted for two cases: parallel HEV and series HEV (Figure 9). In both cases, the 

adopted test vehicle is a hybrid electric tracked vehicle for which the complete vehicle and EMS data 

are known and have been previously published [13,39,40]. The EMS was adapted from previous work 

with certain parameter changes due to the adoption of the unified ICE map. 

Figure 9. Configuration of hybrid electric tracked vehicles used for simulation (a) case study 1, 

and (b) case study 2 (LM, RM – left and right motor, S – sun, C – carrier, R – ring gear) 

Additionally, all vehicle parameters were retained from the previous work except for the engine, 

which has been downsized in this study The previously used 235 kW engine was replaced with a 205 

kW Caterpillar 3126E diesel engine, as detailed experimental data for this engine is available from 

ADVISOR software [35]. This engine was selected because it offers the closest power value to the 

original engine while providing the necessary detailed data. The vehicle and simulation data are listed 

in Table 2, while the custom synthesized drive cycle, specifically designed for EMS evaluation in 

hybrid electric tracked vehicles [13], is depicted in Figure 10. 

It is important to note that the results presented are specific to the Pareto solution closest to the 

origin, as defined by Eq. (4), and serve as an illustration of the algorithm effectiveness. Given that the 

optimization is conducted offline, it is possible to evaluate all Pareto solutions and analyze their 

outcomes. Then, for a specific desired outcome, such as a precise reduction in a particular emission or 

a maximum allowable increase in fuel consumption, a preference-based selection can be performed to 

choose the most suitable Pareto solution. 

Figure 10. Drive cycle used for simulations 
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Table 2. Overview of simulation parameters 

Parameter Case study 1 Case study 2 

Vehicle mass 13,850 kg 13,850 kg 

Track contact length 3.3 m 3.3 m 

Vehicle frontal area 5.5 m
2
 5.5 m

2
 

Sprocket radius 0.2577 m 0.2577 m 

Vehicle tread 2.526 m 2.526 m 

Planetary gear ratio 2.546 - 

Rolling resistance coefficient 0.07 0.07 

Air density 1.2258 kg/m
3
 1.2258 kg/m

3
 

Drag coefficient 1.1 1.1 

ICE 205 kW at 2200 rpm 205 kW at 2200 rpm 

EM 2x60 kW, 1800 rpm 2x120 kW, 9000 rpm 

Battery 46 kW, 25 kWh 105 kW, 75 kWh 

3.1. Case study 1 – parallel HEV 

 

For Case Study 1, vehicle and powertrain specifications were obtained from previous work 

[13,40] and are listed in Table 2. The multi-mode EMS used for this case study remains the same as in 

the previous work and operates in five modes: 

1. Electric only: where only the electric motors provide traction. 

2. ICE only: where only the ICE provides traction. 

3. Hybrid mode: where both the ICE and the electric motor provide traction. 

4. Traction + Charge: where the ICE provides traction and charges the battery simultaneously. 

5. Regenerative braking: where braking energy is recuperated. 

In hybrid mode, the EMS selects the speeds of both the EM and the ICE to maintain the 

operating point of the ICE within the most efficient range at all times, enabled by the speed coupling 

of the ICE and EM as depicted in Figure 11.  

Figure 11. EMS algorithm used in the simulation for case study 1 

 

The EMS explores every possible candidate speed within the EM’s range to identify the ICE 

speed that results in the lowest fuel consumption, using the ICE fuel map. However, this paper 

introduces a key distinction in the hybrid mode: instead of relying solely on the fuel map for the EM’s 

operating point, the EMS utilizes a unified ICE map. This unified map optimizes the entire ICE 

operation by balancing fuel consumption and emissions.  Simulation results with the new EMS and the 

unified ICE map indicate a significant reduction in ICE emissions, albeit with a slight increase in fuel 
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consumption, as shown in Figure 12. The proposed EMS with the unified ICE map enabled a 

reduction of over 32% in emissions at the cost of only a 3.5% increase in fuel consumption.  

The unified ICE map for the 205 kW engine, along with the ICE operating points determined by 

the EMS, are shown in Figure 13. 

Figure 12. Relative difference of emissions and fuel consumption compared to the baseline EMS 

 

Figure 13. Operating points on the unified ICE map 

From Figure 13, it is clear that the EMS works effectively with the unified map and that the 

operating points are well within the regions of the map with the smallest PI. In the baseline strategy, 

which was designed exclusively for fuel economy, the operating points were heavily clustered within 

regions prioritizing minimal fuel consumption. In contrast, the new EMS with the unified map 

strategically distributes the operating points across broader regions, optimizing for a more general set 

of parameters, including emissions and overall system efficiency. The unified map facilitated real-time 

control and efficiency improvements by balancing different emission parameters. 

 

3.2. Case study 2 – series HEV 

 

For Case Study 2, a hybrid electric tracked vehicle with a series configuration was utilized, as 

illustrated in Figure 9. The baseline EMS used in previous work is the Power Follower Control 

Strategy (PFCS) [39]. This strategy was selected due to its widespread application in HEVs. PFCS 

follows a power-following approach, where the ICE power adjusts to meet the load with some 

deviation to maintain the battery state of charge (SOC). Specifically, the ICE power follows the load 
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when SOC is in predefined range [    ,     ], but biases the ICE operation to either charge or 

discharge the battery when SOC deviates from this predefined range: 

 

 

     {

                                                                    

                                                                  

                                                               

  (5) 

 

Where      is the ICE control signal,     is the power demand,        is the maximum power 

of the secondary power source, and         is the tunable minimum power of the ICE. When      

 , the ICE power is set to       . When       , the ICE power is defined as: 

 

 

        {

                                                        

                                                  

                                                        

 (6) 

 

where         is the maximum power of the ICE and       is given by: 

 
            (

         

 
       )  (6) 

where     is the charging factor, determined iteratively. 

In this study, a unified ICE map was incorporated into the PFCS algorithm. Since the output of 

PFCS is the required ICE power, an OOL of the ICE was developed for every power curve in 5 kW 

increments and integrated into the PFCS algorithm as a lookup table. This allows the algorithm to 

select an operating point on the OOL corresponding to each power input. The OOL for the 205 kW 

ICE used in this simulation, along with the operating points obtained post-simulation, are shown in 

Figure 14. 

 

Fig. 14. Comparison of operating points for baseline and modified PFCS (note that the dashed 

isopower curves are plotted in 30 kW steps for readability) 
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Figure 14 illustrates that the operating points with the unified ICE map closely match the preset 

OOL, adhering to the smallest performance index for each input power. Simulation results with the 

modified PFCS demonstrate a significant reduction in ICE emissions, as depicted in Figure 15. The 

results indicate that the modified PFCS with the unified ICE map achieved a notable reduction of over 

29% in emissions, with a relatively modest increase of 5.94% in fuel consumption. The observed 

reduction in emissions for series HEVs is somewhat smaller compared to parallel HEVs, which can be 

attributed to the inherently more efficient operation of the ICE in series configurations. Series HEVs 

often benefit from their design, which allows the ICE to operate primarily within its efficient regions 

due to the lack of a direct physical connection to the load. This design choice generally results in 

better overall efficiency and potentially less room for improvement compared to parallel HEVs. 

Fig. 15. Relative differences in emissions and fuel consumption compared to the baseline PFCS 

 

3.3. Discussion and analysis 

The proposed method for optimizing ICE operation balances conflicting objectives—fuel 

consumption and emissions—by generating a Pareto front that offers a range of optimal trade-offs 

rather than a single fixed solution. This approach provides flexibility, enabling engineers to select 

solutions based on factors such as emission regulations, aftertreatment capabilities, or specific 

performance targets. Using the NSGA-II algorithm ensures a diverse set of solutions, facilitating 

offline analysis where each Pareto-optimal point can be evaluated individually. 

The selected solution closest to the origin represents a balanced compromise across all 

objectives, but other points on the Pareto front can be prioritized depending on context. For instance, 

stricter emission regulations might favor solutions minimizing NOx or HC emissions, even at the 

expense of slightly higher fuel consumption. Conversely, when fuel efficiency is the priority, another 

solution may be chosen that minimizes consumption while maintaining acceptable emissions. For 

example, the most practical solution would be to determine all Pareto solutions which satisfy the 

environmental regulatory demand for emissions, and then out of that pool of solutions choose the most 

fuel efficient one. This adaptability aligns with the complex requirements of HEVs, where powertrain 

flexibility allows for more effective optimization of engine operation. The unified ICE map developed 

in this study can also be applied to ICE-only configurations by optimizing gearshifting strategies. 

However, the flexibility of HEVs, where the electric motor assists in managing power demands, 

allows for significantly greater optimization potential. This makes the combination of HEVs and 

unified ICE maps the most effective approach for balancing fuel consumption and emissions. 

In the case studies, the unified ICE map enabled a substantial reduction in overall emissions by 

incorporating trade-offs across operating conditions. While the modified EMS, which relied on the 

unified map instead of traditional fuel consumption maps, resulted in a slight increase in fuel 
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consumption, the environmental benefits were considerable. This demonstrates the value of the unified 

ICE map as a tool for achieving balanced performance and emissions in modern vehicle powertrains.  

Notably, the results closely align with previous research [41], which also reported significant emission 

reductions accompanied by a slight increase in fuel consumption. 

 

4. Conclusion 

This paper presents a multi-objective optimization framework for the ICE performance, 

focusing on minimizing fuel consumption and emissions (CO, NOx and HC). The developed 

methodology integrates normalized objective functions with weighted factors to derive a unified 

performance index, enabling the simultaneous optimization of multiple conflicting objectives. 

By employing the NSGA-II algorithm, the study successfully generates a diverse set of Pareto 

optimal points, each representing a different trade-off between the objectives. This approach not only 

facilitates a better understanding of the trade-offs between various performance metrics but also 

supports informed decision-making in the design and optimization of EMS. Engineers can explore 

different solutions along the Pareto front and select the most practical option based on specific 

demands, such as regulatory requirements, vehicle design constraints, or operational priorities. The 

application of this optimization strategy to the engine map grid results in significant performance 

improvements, as evidenced by the possibility of enhancing the already existing EMS such that the 

considerable reduction in emissions is achieved compared to baseline data. The EMS application of 

the unified ICE map can be achieved by precalculating the entire ICE map and using it in the EMS, or, 

if computationally expensive, by deriving OOLs for the specified inputs used in the EMS. 

Future work will enhance model scalability to develop high-fidelity scaled models based on the 

optimized maps. The integration of other powertrain elements, such as battery, motor, and 

transmission efficiency maps, will be explored to create a comprehensive performance map. This 

integrated map will aid in deriving a rule-based strategy to maximize overall powertrain efficiency and 

achieve better fuel economy. Additionally, the selection of weights in the optimization process can be 

refined based on emission standards or the quality of the exhaust aftertreatment system. The dynamic 

nature of these maps, influenced by variables like coolant temperature, can be enhanced using 

mathematical relationships to provide more adaptive and accurate control strategies. 

In conclusion, this research has laid a foundation for optimizing ICE operation in HEVs, 

demonstrating the feasibility and benefits of a unified approach to emission and fuel consumption 

reduction. Future work will build upon these findings to further refine and expand the applicability of 

these optimization strategies, contributing to the development of more efficient and environmentally 

friendly powertrain systems.  
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