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Abstract:  

The study aims to investigate the dynamics of fluid flow and thermal energy exchange within a 2D differentially 

heated cavity using the low Mach number approximation. Specifically, it seeks to investigate the occurrences 

related to natural convection and thermal radiation in a medium that exhibits absorption, emission, and scattering 

properties and exposed to a significant temperature difference. This methodology is applied within the 

framework of the low Mach number model of the Navier-Stokes equation. The interaction of momentum, 

energy, and radiation transfer equations within the cavity is addressed through an iterative approach that 

combines discrete-ordinates and finite volume methods enhanced by the SIMPLER algorithm. The obtained 

findings show that the LMN model overestimates radiative transfer, with higher radiative power in the 

absorbing-emitting case. Transparent media (τ = 5) result in the highest heat transfer, while lower opacity favors 

the absorbing-diffusing medium. Flow intensity increases with albedo, and isotherms deform due to strong fluid 

dynamics. At high opacity, heat transfer is greater in transparent media, with lower velocities in more diffusing 

media. 
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Planck. 

1. Introduction  

The transfer of thermal energy within a system is a fundamental aspect of heat transfer analysis, 

encompassing convection, conduction, and radiation. Traditionally, convection and radiation have been treated 

as distinct processes; however, in reality, they are closely intertwined, and their interactions can significantly 

impact the thermal dynamics of a system. Understanding this coupling is crucial in numerous engineering 

domains, especially in scenarios requiring accurate heat transfer forecasts, such as in high-temperature furnaces, 

solar energy systems, rocket propulsion, and industrial heating processes [1, 10, 14]. 

Participating media, which can absorb, emit, and scatter thermal radiation, play a crucial role in fields     

such as solar energy harvesting, medical technology, chemical processing, and aerospace engineering [11, 12].      

The challenge in these domains lies in addressing the varying scales of thermal processes and the distinct 

contributions of convection and radiation. At elevated temperatures, radiative heat transfer assumes dominance, 

while at lower temperatures, it plays a minor role unless stimulated by an external radiation source. In non-

participating media, heat transfer primarily hinges on conduction and convection, both of which exhibit linearity 

concerning temperature gradients. In contrast, radiative heat transfer is contingent on the fourth power of 

temperature, rendering it the predominant mechanism in high-temperature environments. 

Radiative transfer is mathematically represented by the Radiative Transfer Equation (RTE), an integro-

differential equation that accounts for the spatial and angular variations in radiation intensity. Solving the RTE is 

computationally complex and requires sophisticated numerical methods. The Discrete Ordinates Method (DOM), 

when combined with finite volume formulations, is frequently employed due to its ability to integrate radiation 

with the governing equations of fluid flow and energy transfer. This integration enables a more comprehensive 

analysis of heat transfer by concurrently solving the RTE and the convection equations on the same 

computational grid. 

Previous studies emphasize the importance of incorporating realistic fluid properties, significant 

temperature variations, and the effects of compressibility in thermal models. The Low Mach Number (LMN) 

approximation, derived from compressible Navier-Stokes equations, is particularly useful for modeling low-

velocity compressible flows. This approach simplifies computations by separating pressure into a uniform 

thermodynamic component and a dynamic component. By removing acoustic waves from the equations, the 

LMN approximation allows for larger time steps in numerical simulations while still accounting for density 

changes caused by temperature variations. 



The interaction between radiation and convection in participating media is further influenced by boundary 

conditions and the interaction between solids and fluids. This study adopts the LMN approximation to tackle 

these complexities and to simulate the combined effects of natural convection and radiation in a two-dimensional 

cavity. Through examining the roles of radiative properties and fluid characteristics, this work aims to deepen 

the understanding of coupled heat transfer processes in engineering systems.  

The differential heating of cavities is a well-known problem often utilized to validate computational fluid 

dynamics (CFD) codes. To our knowledge, the publications of Lauriat [1], Yucel et al. [2], Draoui et al. [3], 

Fusegi and Farouk [4] and Tan and Howel [5] are among the first published works dealing with the problem of 

radiation / convection coupling in semi-transparent medium. In most of the works, authors have demonstrated 

the significant and at times predominant role of radiation in heat transfers. However, the influences of the types 

of boundary conditions and the geometrical configuration on the flow stability and the heat exchange coefficients 

are generally rarely studied, though they are of great importance. As a fact of matter, it is useful for a practitioner 

to know, for a given geometry, the condition types at boundaries or which geometrical configuration allows 

obtaining, for example, the desired heat transfer coefficient.  

From a fundamental viewpoint, in these kinds of problems, the combined study of their influences and of 

the radiation can provide valuable information on flow stability, regime transition, etc. The interaction of 

radiation with a material medium (solid, liquid, gas) gives rise to four kinds of phenomena: emission, adsorption, 

diffusion (gas, particles), reflection / refraction. These phenomena are linked to the atomic and molecular 

characteristics of the crossed medium and to the macroscopic (geometrical) or physical (conductivity) 

characteristics of the material. In recent years, there has been an increasing emphasis on numerical studies 

concerning the flows of radiating fluids confined within cavities. The commonly encountered configuration 

involves a differentially heated cavity, where two vertically opposing walls are kept at constant temperatures, 

whereas the other walls are adiabatic and horizontally oriented. The authors often consider the flow of radiating 

grey fluids in two-dimensional cavities in steady state [1, 2, 5].  

These studies have demonstrated that under convective conditions, radiation increases the flow velocity 

and reduces vertical thermal stratification. Borjini et al. [6] in their investigation of grey fluids in a square cavity, 

found that radiative transfers accentuate three-dimensional effects at intermediate optical thicknesses. 

Furthermore, the grey gas approximation tends to overestimate radiative transfers and fails to accurately predict 

velocity and temperature fields [7, 8]. The substantial computational resources required for unsteady numerical 

simulations have remained a limiting factor in exploring transitional regimes of turbulent radiative gases. 

Existing research predominantly employs Reynolds-averaged simulations [4] or computationally intensive 

simulations [9].  

Moufekkir et al. [10] studied how radiation affects natural convection heat transfer in a square enclosure 

filled with a gas that interacts with radiation under typical conditions. The results show that radiation enhances 

temperature and velocity gradients, while a scattering medium generates multicellular flow dynamics. Similarly, 

Xianglongliu et al. [11] developed a computer model that replicates natural convection combined with volume 

radiation in a two-dimensional square cavity, including an absorbing, emitting, and diffusing medium. This study 

demonstrated that heat transfer is influenced by the medium’s properties and cavity geometry, with natural 

convection enhancing heat fluxes while altering Nusselt number distributions. Mezrab et al. [12] provided 

computational solutions for the interaction between radiation and natural convection heat transfer by 

implementing double diffusion within a square enclosure filled with an absorbing, emitting, and non-diffusing 

grey gas. The provided results serve as a benchmark solution. Their results, serving as a benchmark for further 

studies, reveal that radiation increases fluid temperature, enhances the thermal gradient on the cold wall, and 

reduces it on the hot wall, thereby accelerating flow velocity. In double-diffusive flows, the impact of radiation 

is influenced by parameters such as flow type, buoyancy ratio (N), and Rayleigh number (Ra). Ki Hong Byun et 

al. [13] investigated the role of wall specular reflection on natural convection heat transfer combined with 

radiation in an infinitely long square pipe filled with a grey medium capable of absorbing and emitting radiation. 

Their findings emphasize the Rayleigh number, conduction-to-radiation ratio, and wall emissivity are crucial in 

determining heat transfer and fluid flow behavior. Specifically, lower conduction-to-radiation ratios and reduced 

wall emissivity lead to more pronounced variations in heat flux and temperature distributions, with specular 

reflection significantly influencing fluid motion. Chaabane et al. [14] introduced an innovative computational 

approach to analyze the interaction between natural convection and radiation in a two-dimensional enclosure 

containing a medium capable of absorbing, emitting, and diffusing radiation. They solved the radiative transfer 

equation using the control volume finite element method (CVFEM) and computed density, velocity, and 

temperature variables with the Lattice Boltzmann equation (LBE) utilizing two double populations. The results, 

validated against existing studies, demonstrated that the proposed method is both efficient and accurate, with 

good numerical stability. Other authors interested in heat transfer in transparent media have explored the surface 

radiation's impact on free convection in confined cavities [15-17]. Wang et al. [15] developed a numerical model 



to study the interaction of natural convection and surface radiation in a square cavity filled with air. Their results 

show that surface radiation reduces thermal stratification, cools the top wall, and heats the bottom wall, while 

increasing airflow along the horizontal walls. They also found that at low Rayleigh numbers, radiative heat flux 

is proportional to the temperature difference, and radiation induces earlier time-dependent flows with multiple 

periodic solutions within a specific Rayleigh number range. Hamimid et al. [16] explored natural convection and 

surface radiation in a square enclosure using a low Mach-number model. The study found that temperature 

differences and surface emissivity greatly influence heat transfer and fluid flow, with radiation reducing thermal 

stratification and enhancing horizontal flow. Bouafia et al. [17] investigated the effect of surface radiation on 

natural convection in a square cavity with large temperature differences using numerical simulations. They found 

that radiation alters heat transfer by cooling the top wall and heating the bottom wall, while reducing thermal 

stratification. 

              Kogawa et al. [18] investigated the impact of thermal radiation on turbulence in natural convection, 

revealing that radiation can either enhance or suppress turbulence depending on the absorption coefficient. They 

observed that radiation thickens the thermal boundary layer, stabilizing the flow by reducing instabilities. 

Parsaee et al. [19] studied the effects of a variable radiative absorption coefficient on heat transfer in a 

magnetized fluid-filled cavity. Their results showed that using a variable coefficient reduced heat transfer by 

10.5%, with the effect varying based on the Hartmann and Rayleigh numbers. Barbosa et al. [20] explored heat 

transfer in square enclosures containing CO₂ , emphasizing the influence of radiation and geometric factors. 

Radiation increased heat transfer by up to fourfold, while protrusions improved temperature distribution and 

airflow, enhancing overall efficiency. Sertel et al. [21] examined the interaction of convective and radiative heat 

transfer in tube banks within a participating medium. They found that medium properties, such as scattering and 

tube spacing, significantly influenced heat transfer and developed a highly accurate correlation for predicting 

Nusselt numbers. Moutahir et al. [22] developed mathematical models to simulate radiative and conductive heat 

transfer in non-grey media undergoing phase changes. Their study highlighted the critical role of thermal 

radiation in accurately predicting phase transitions and interface dynamics in high-temperature processes. 

In our previous study, we utilized the Boussinesq approximation to explore numerically the interplay of 

natural convection and radiation within a square cavity containing a grey non-diffusing and semi-transparent 

fluid [23]. The present investigation seeks to build upon previous research by exploring a medium that both 

absorbs and emits light while also diffusing it. This study aims to accurately model the coupling effects of 

convection and radiation in heat transfer problems. The applied conditions are designed to reproduce realistic 

scenarios in high-temperature applications, such as solar collectors and heating furnaces, where radiation often 

dominates heat transfer due to its dependence on the fourth power of absolute temperature. Considering these 

conditions, the study highlights the inherent coupling between convection and radiation, especially in the 

participating media, allowing a comprehensive understanding of their interactions. The use of the discrete 

ordinate method (DOM) facilitates numerical solvability and model validation, addressing the challenges posed 

by high-temperature environments and compressibility effects. Furthermore, the use of the low Mach number 

(LMN) approximation ensures computational efficiency by simplifying the treatment of density fluctuations with 

temperature. The research offers a robust framework for exploring various engineering applications. 

 

2. Mathematical formulation 

We consider a Newtonian fluid with a presumed laminar and steady flow, governed by the Navier-Stokes 

equations obtained under the assumption of the low Mach number. An ideal gas equation of state is adopted, and 

the transport equations are solved in a conservative manner. The low Mach number approximation accounts for 

the density dependence on temperature everywhere in the governing transport equations, while in the Boussinesq 

approximation the connection between the temperature field and the dynamic one is only obtained through the 

buoyancy term. The radiative transfer equation (RTE) is solved using the discrete ordinate method (DOM) for an 

absorbing, emitting, and isotropically scattering gray gas, thus determining the intensity field of the radiation 

[24].  

A source component is included in the energy equation to ensure the coupling of radiation and convection 

in situations involving a participating medium. Figure 1 illustrates the suggested physical model. The cavity is a 

square containing a perfect, compressible gas under the influence of a gravitational field parallel to the vertical 

walls. The walls on the left and right sides have constant temperatures, TC and TH respectively, where TH is 

greater than TC. The horizontal walls are designed to be adiabatic. Each wall is considered dark and diffusely 

reflecting. 
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Figure 1. Non-dimensional radiative heat flux on the hot wall 

Under these assumptions, the governing equation may be written in a dimensionless manner as follows [16, 17, 

26]: 
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The rate of radiative exchange in the energy balance of the cavity is determined by the source term of the energy 

equation, which is equivalent to the divergence of the radiative flow. This term is calculated by solving the 

radiative transfer equation, which is written in Cartesian coordinates for a two-dimensional medium with 

scattering properties [24]: 

  (
  

  
)   (

  

  
)     

 

 
[(   )(      )

   ∫    
  

]  (6) 

 The flux divergence may be determined by using the solution to equation (6) in the following manner: 
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The discretization of the radiative transfer equation is conducted for a particular direction    and then resolved 

using the finite volume method [25]: 
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By integrating equation (7) of the radiative transfer equation over the control volume results in: 

     (         )      (         )                  (8) 

With:      ,        and         

   and     mare are the positive direction cosines according to X and Y. 

Lm,P signifies the luminance value at the center, while Lm,E, Lm,W, Lm,N, and Lm,S denote the luminance values in 

the corresponding East, West, North, and South directions. 

The luminance values are known on the West and South faces, while they are unknown at the center (P) and on 

the East and North faces. We therefore need two additional relationships. Through interpolation, the unknown 



luminances LE and LN are removed, leading to equation (7) being simplified into an explicit relationship between 

the unknown luminance LP and the known luminances LW, LS, and Lb. 
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In a diamond system, a = b = 0.5, while a = b = 1 indicates the step scheme.  

The Step method is applied to the algebraic equations derived from Equation (8). The relationship between 

natural convection and radiation of the cavity's participating medium is resolved via an iterative process. The 

RTE equation coupling influences heat flows by altering the local temperature of the medium after the RTE is 

solved:  
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We calculate     from: 
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The temperature boundary conditions are as follows: 

      at     and       (14) 

      at      and       (15) 

In radiative heat transfer, the boundary conditions of a problem are typically represented by a locally flat, opaque 

surface that participates in radiative exchanges. For a gray, opaque, and diffuse surface, the radiance at the 

boundary consists of two main contributions [24]: 

-The radiance emitted by the boundary itself; 

- The incident radiance from the medium, which is partially reflected by the surface. 

The radiative intensity is given by the equation: 
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This condition applies to all directions such that      ⃗⃗ ⃗⃗   , where   ⃗⃗ ⃗⃗  is the surface normal vector pointing 

inward into the domain. 

Where: 

  : emissivity of the surface; 

  : local surface temperature; 

  
   (  ): incident radiative flux density on the surface at the specified point. 

The incident radiative flux density,   
   (  ), is determined by: 

  
   (  )  ∫   (     ⃗⃗  ⃗)

 

  ⃗⃗ ⃗⃗  ⃗   ⃗⃗  ⃗  
|  ⃗⃗ ⃗⃗    ⃗⃗  ⃗|   . 0pn S   

Here: 

  ⃗⃗  ⃗ represents the direction of the incident radiation on the surface; 

     is the elemental solid angle around the direction   ⃗⃗  ⃗. 

The radiation boundary conditions are: 
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3. Thermal transfer variables 

           The average Nusselt numbers quantify the effects of heat convection and radiation over the active walls, 

as specified by [24, 25, 27]: 

      ∫
  

   
|
  

  
|
     

  
 

 
 (21) 

     
 

     
∫ |     |     
 

 
   (22) 

The average total Nusselt number is a specified quantity: 

              (23) 

4.  Numerical method 

To solve the governing differential equations for velocity, pressure, and temperature fields, the finite volume 

technique is utilized. To estimate the advection-diffusion terms, a power scheme is employed. The coupling 

between pressure and velocity is resolved using the SIMPLER algorithm (Semi-Implicit Method for Pressure 

Linked Equations Revised) with a staggered grid, as described in Patankar [26]. The equations governing the 

system are formulated in a transient form, and to achieve a steady state solution, an iterative procedure utilizing a 

fully implicit transient differencing scheme is implemented. The line-by-line Thomas algorithm is utilized to 

solve the discretized equations, incorporating two directional sweeps (Figure 2). 

 

Figure 2: Numerical Algorithm 

In this study, a grid with dimensions of 150 x 150 points is selected to strike a balance between the required 

accuracy and computational time. To ensure satisfactory convergence of the solutions, a convergence criterion of 

10
-5

 is set for the residuals. The outer iterative loop continues until a steady state is reached, which is determined 

by the simultaneous satisfaction of the following convergences: |   
       |     , where ϕ represents the 

variables U, V, or T. To calculate the source term in Equation 4, which corresponds to the radiative flux, the 

intensity field is solved using the Radiative Transfer Equation (RTE). The angular discretization is performed 

using the discrete ordinates method (DOM), as described in [27], with the implementation of an S 8 quadrature 

derived from Modest [24]. The S 8 quadrature is employed to solve radiative transfer equations by discretizing 

 



the angular domain into eight directions. The finite volume approach is employed to discretize the spatial 

domain. The criteria for convergence in the RTE calculations and for achieving steady state in the remaining 

governing equations were specified as: 
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5. Mesh sensitivity  

Table 1 presents the results for a Rayleigh number of Ra = 5×10
6
 and an optical thickness coefficient of τ = 

1. The analysis indicates that using finer meshes enhances the accuracy of the results, especially for the average 

Nusselt number. With a non-uniform mesh of 150×150 nodes, the maximum deviation observed is just 0.79%. 

Furthermore, both the total and radiative Nusselt numbers (NuT and NuR) show stable values with the 150×150 

mesh, and no significant changes are observed with even finer meshes. This mesh size is sufficient to obtain 

accurate results while optimizing computational efficiency. 

Table 1: Radiative and total averaged Nusselt number for Ra = 5 10
6
, Pr = 0.71 and τ = 1. 

Mesh 80   80 100   100 150   150 200   200 250   250 

NuT 39.01 38.70 38.55 38.55 38.55 

NuR 31.80 31.60 31.37 31.37 31.37 

6. Verification 

This study is prompted by the lack of experimental and numerical data concerning the integration of natural 

convection in participating environments under non-Boussinesq conditions. The literature provides limited data 

on the interactions between compressible convection and volume radiation. To address this gap, we conducted 

two validation cases. In the first validation test, we performed calculations for a square cavity considering pure 

radiation conditions. The chosen conditions were similar to those employed by Razzaque et al. [28].  The 

problem is represented as radiation emitted from surfaces at a temperature of T = 1 K. The top wall is maintained 

at a specific temperature, with the remaining walls held at 0 Kelvin. We study the radiative equilibrium of the 

medium by using uniform meshes. Figure 3 evaluates the non-dimensional radiative heat transfer on the heated 

wall. An increase in the absorption coefficient (κ) results in more energy emission from the substance. As a 

result, the net heat flow Qr decreases, but the radiated power from the hot wall stays constant. The comparison 

reveals a satisfactory degree of concordance among the findings. 
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Figure 3. Non-dimensional radiative heat flux on the hot wall 

The code developed in this study underwent a secondary validation to verify its precision in modeling 

the interaction between natural convection and volumetric radiation under the Boussinesq approximation. The 

fluid in question is treated as radiatively grey, with a Prandtl number of 0.71 and a Rayleigh number of 5×10
6
. 

To evaluate the impact of radiative transfer, simulations were performed for multiple optical thickness values (τ 

= 0.2, 1, 5). The cavity walls were assumed perfectly black, simplifying the boundary conditions by considering 

ideal emissivity. The simulation results demonstrate strong alignment with previously published data, as 

illustrated in Table 2, with a maximum observed deviation of just 2.281%. This minimal variation highlights the 

effectiveness and accuracy of the implemented model in capturing the combined effects of natural convection 

and volumetric radiation across different optical regimes. 



 

Table 2. Radiative and global average Nusselt values on the heated wall of the cavity. 

7. Results and Discussion  

The results relate to the study of grey gas participation effect on the natural convection in a square cavity 

whose both vertical walls are differentially heated and containing an absorbing, emitting and diffusing medium. 

In order to investigate the impact of radiative parameters, specifically albedo and optical thickness, on the flow 

pattern and spatial temperature variation, the following simulation parameters are taken into account:  εb = 0.6, (τ 

= 0.2, 1, 5), (ω = 0 - 0.75), Pr = 0.71, Ra = 5.10
6
 and Pl = 0.02.  

The study carried out is characterized by the graphic visualization of Streamlines contours, the isotherms, 

the velocity profiles according to X and Y and temperature profiles as a function of the variation in optical 

thickness for the three cases studied. The different cases studied are reported in table 3.  

Table 3. Configurations tested 

 Configuration 1 Configuration 2 Configuration 3 

Isothermal walls             

Adiabatic walls             

medium Transparent 

    et     

Absorbing and emitting 

    et     

Absorbing and diffusing 

    et     

The temperature contours, flow lines, and thermal distributions at mid-planes located at X=0.5 and Y=0.5 

are shown in figures 4 to 6 for each of the studied cases. Figures 4 and 5 show that isotherms and streamlines of 

case 3 (absorbing and diffusing) are not greatly influenced by the coefficient of diffusion. There is only a minor 

decrease in the flow pattern (an increase in     ) in the enclosure as  approaches 1, which corresponds to case 

1 (transparent). Additionally, we observe that the gas participation provokes a strengthening of the temperature 

gradient and of the velocity in proximity to the active walls. In the case of participating medium, we observe a 

significant alteration in the temperature distribution as the optical thickness rises. We notice also a temperature 

homogenization in the cavity. When considering the absorbing and diffusing gas, it is evident that the fluid 

motion experiences a notable acceleration, while the temperature reaches its maximum potential, particularly 

when compared to the absorbing-emitting gas. This distinction becomes more pronounced when the opacity of 

the medium is thin (   ). When the gas is transparent, the radiation exchange among the cavity walls imposes 

a stratified temperature distribution on the adiabatic walls. The temperature and flow fields are asymmetrical, but 

considering the effects of volume radiation (absorbing-emitting), the temperature difference increases near the 

cold active wall. The cooling of the upper wall and the heating of the lower wall induce a homogenization of the 

gas temperature and a strong deformation of the thermal stratification at the heart of the cavity. The physical 

mechanism is different from the case of the transparent medium, since radiative gas-gas and gas-wall transfers 

have a direct effect on the temperature of the gas. The temperature of the side and horizontal walls is now 

imposed by the gas, the conductive flux being zero on these walls. Thus, compared to the scenario involving the 

transparent medium, the upper wall is cooled, the lower wall is heated. 
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Figure 4. Streamlines for different media for Ra = 5.10
6
 and Pr = 0.71 

When the opacity is high, the coupling phenomenon is more sensitive to the absorbing-emitting medium, 

as its temperature is the most affected. Conversely, when the optical thickness is low, it becomes more sensitive 

to the absorbing-diffusing medium, as its temperature is the most affected. Additionally, a high value of the 

optical thickness significantly reduces the effect of the albedo coefficient. For a larger value of  we observe a 

great temperature gradient close to the limit layer of the cold wall. Increased opacity of the medium results in a 

heightened radiation effect (figure 5). If the gas is viscous, the streamlines will retain their initial form. As the 

frequency ω grows, the impact of radiation diminishes, and the isotherms become the same when the opacity is 

very high (τ = 5). Opacity levels below 1 result in noticeable distortion. 
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Figure 5.  Isotherms for different mediums for Ra = 5.10
6
 and Pr = 0.71 

For the participating medium and in radiation presence, the cavity nucleus is warmer in contrast to the 

transparent medium case, which produces a significant alteration of the temperature gradient close to the left 

wall. Simultaneously, the isotherms stratification is broken, and the streamlines show a unicellular structure 

(figures 4 and 5). We notice that the cavity nucleus is more stratified when the medium becomes transparent 

(figure 5). The temperature distributions along the central axes for varying opacity levels and in the three 
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configurations, presented in figure 6, show that the thermal gradients undergo significant variations from one 

medium to another and increase with the increase in the albedo coefficient. However, we find almost the same 

temperature profile when the medium is more opaque. 
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Figure 6. Temperature profiles at mid-height for Ra = 5.10
6
 and Pl = 0.02, (a)   =0.2, (b)   =1, (c)   =5. 

The profiles of velocity components in the horizontal and vertical directions are shown in figures 7 and 8. 

Analysis of the data shows that optical thickness has a considerable influence on the maximum velocities (both 

horizontal and vertical) at the boundary layers of all three media. It can be seen that maximal velocity values 

increase with the optical thickness when τ ≤ 1and decrease when we increase the albedo coefficient. If τ = 5 the 

maximal values decrease in comparison with a thinner medium (τ = 1). Energy transfers between the gas and the 

walls can occur over long distances, allowing the fluid to move away from the walls. The volume of fluid 

flowing in the cavity becomes larger, which explains the boundary layers expanding and the velocities 

increasing. We deduce from the comparison between the three media studied that there is less radiation 

absorption in the case of the absorbing-emitting medium when the opacity is low (figure 10). With regard to the 

case where the gas is transparent, the thickening of the boundary layers is explained by the preheating of the gas 

along the lower wall, upstream of the ascending vertical boundary layer, and reciprocally by the cooling of the 

gas along the wall high. The circulation of the gas is clearly enhanced when the gas radiates. The cavity core is 

set in motion while it remains almost motionless in the case of the transparent medium. In terms of heat transfer, 

the variations of the average Nusselt numbers in the three media as a function of  and , show that the 

absorbing-diffusing medium gives the best heat transfer when the medium is thin (table 4). 

Figure 7. Horizontal velocity at vertical cross-section for Ra = 5.10
6
 and Pl = 0.02 (a)  =0.2, (b)   =1, (c)   =5 
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Figure 8. Vertical velocity at horizontal cross-section at Ra = 5.106 and Pl = 0.02 

(a)   =0.2, (b)   =1, (c)   =5 

An additional objective of this study is to compare the behavior of the three media and their effects on 

heat exchanges in the non-Boussinesq (non-BC). The results show that there is a different behavior for heat 

0,0 0,2 0,4 0,6 0,8 1,0

-400

-200

0

200

400

600

 Transparent

 Absorbing-emitting

  Absorbing-diffuse

  = 0.25

  = 0.5

  = 0.75

=0.2

U
(0

.5
,Y

)

Y
 

0,0 0,2 0,4 0,6 0,8 1,0

-600

-300

0

300

600

900

 Transparent

 Absorbing-emitting

Absorbing-diffuse

 = 0.25

  = 0.5

 = 0.75

= 1

U
(0

.5
,Y

)

Y
 

0,0 0,2 0,4 0,6 0,8 1,0

-500

-250

0

250

500

750

 Transparent

 Absorbing-emitting

  Absorbing-diffuse

  = 0.25

  = 0.5

  = 0.75

= 5

U
(0

.5
,Y

)

Y
 

(a) (b) (c) 



transfer distribution when the fluid changes. The average and local Nusselt number variations (convective, 

radiative and global) as a function of the albedo coefficient and the optical thickness appear in table 4 and in 

figures 9-11. When the medium is transparent and    , the radiation notably enhances the heat flux, the 

contribution of convective and total Nusselt remains almost similar with small difference for the absorbing-

emitting and diffuse media. 

Table 4. Average convective, radiative, and total Nusselt numbers as function of τ and ω  

                 

Transparent 0 0 9.807 49.425 58.055 

Absorbing-

emitting 
0 

0.2 7.236 46.379 52.511 

1 5.858 37.959 42.914 

5 5.733 28.037 33.77 

absorbing-

diffusing 

0.25 0.2 5.988 173.644 179.632 

1 6.687 134.594 141.281 

5 5.392 27.522 32.914 

0.5 0.2 6.024 173.246 179.27 

1 7.108 133.977 141.085 

5 5.071 26.607 31.677 

0.75 0.2 6.829 172.739 179.568 

1 6.641 132.565 139.206 

5 4.983 24.624 29.607 

For    , and when the medium is transparent, radiation significantly increases the thermal flux. 

Simultaneously, the heat transfer in relation to convective and total Nusselt numbers is almost the same in both 

the absorbing-emitting and absorbing-diffusing media. Consequently, the transparent medium (τ = 0) give a 

maximum heat transfer with respect to the participation of the medium. For the participating media, the 

absorbing-diffuse medium gives the best heat exchange. The albedo factor and optical depth decrease the 

radiative and global heat exchange. We can see that when the optical thickness is constant; the radiative and 

global Nusselt numbers increase with the albedo rise and inversely for the convective Nusselt (figures 9-11). 

Moreover, when the albedo is constant, the rates of heat exchange decrease with the optical thickness rise. The 

transparent medium always gives the best convective exchange. If the optical thickness is low (τ≤1) the 

absorbing diffusing medium gives the best heat exchange. At τ = 5, the participating medium emits less radiative 

flux compared to the non-participating medium. The decrease in temperature is attributed to the decline in 

radiative heat transfer over the heated surface with the increase in optical thickness. Radiative heat transfer 

occurs between the hot wall and an effective plane that maintains a higher temperature compared to the cold 

wall. We must notice that the radiative flux at the two cavity extremities is more important for the transparent 

medium when τ = 5. When the gas opacity increases, this effect is near to disappear. When the medium is thin 

the absorbing-diffusing gas increases the radiative flow compared to the absorbing-emitting gas and there is a 

slight difference between the two mediums when the opacity is stronger.  
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Figure 9. Profiles of local convective Nusselt number for Ra = 5.10
6
 and Pl = 0.02 

(a)   = 0.2, (b)  =1, (c)   =5 

The radiative power is represented in figure 12. The power fields of the two media are almost similar and 

the distribution is closer on the walls. The absorbing-emitting medium gives a better distribution of the radiative 

power than the absorbing-diffusing medium. The maximal values of the radiative power increase with the rise of 

the optical thickness and decrease with the albedo coefficient rise, which shows the absorbing quantity has 

played an important role on the radiative flow distribution compared to the diffuse quantity. The maximal values 

of the radiative power increase with the rise of the optical thickness and decrease with the increase in the albedo 



coefficient, which shows the absorbing quantity has played an important role on the radiative flux distribution 

compared to the diffusing quantity. 
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Figure 10. Profiles of local radiative Nusselt number for Ra = 5.10
6
 and Pl = 0.02 

(a)   = 0.2, (b)  =1, (c)   =5 

0,0 0,2 0,4 0,6 0,8 1,0

30

60

90

120

150

180

210

 Transparent

 Absorbing-emitting

   Absorbing-diffuse

 = 0.25

  = 0.5

 = 0.75

N
u

T

Y
 

0,0 0,2 0,4 0,6 0,8 1,0

30

60

90

120

150

180

210

 Transparent

 Absorbing-emitting

   Absorbing-diffuse

 = 0.25

  = 0.5

 = 0.75

N
u

T

Y
 

0,0 0,2 0,4 0,6 0,8 1,0

10

20

30

40

50

60

70

80

 Transparent

 Absorbing-emitting

     Absorbing-diffuse

 = 0.25

  = 0.5

 = 0.75

N
u

T

Y
 

(a) (b) (c) 

Figure 11. Profiles of local global Nusselt number for Ra = 5.10
6
 and Pl = 0.02, (a)   =0.2, (b)   =1, (c)   =5 
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Figure 12. Radiative power for different values of the optical thickness in non-Boussinesq flow 

 

In conclusion of our analyses, it is crucial to examine the impact of the intricate interactions observed in 

participating media. As discussed earlier, the interaction between gas molecules and the walls, along with gas-

gas and gas-wall exchanges, significantly affects the temperatures of the walls. Typically, the upper wall cools, 

while the lower wall heats up, which is a clear deviation from the behavior observed in transparent media. The 



effects of optical thickness further complicate these interactions. In thinner media, radiative heat transfer remains 

highly efficient, with the absorbing-diffusing medium showing superior performance compared to an absorbing-

emitting one. The absorption and scattering of radiation stimulate fluid motion, which enhances convective heat 

transfer. In contrast, thicker media exhibit increased opacity, leading to a reduction in radiative flux, thereby 

weakening convective heat transfer. In such cases, conduction and localized radiation exchanges become the 

dominant modes of thermal transfer. 

 

8. Conclusion 

Natural convection combined with volumetric radiation within an enclosure containing an absorbing, 

emitting, and isotropically scattering gray medium under normal surrounding conditions was studied. Solutions 

of coupled conservation equations of continuity, momentum, and heat were obtained using the finite volume 

method (FVM) with Simpler algorithm. The radiative transfer equation was angularly discretized by the discrete 

ordinates method to calculate the radiative heat source term in the energy equation. The developed numerical 

code was checked by comparison with the bibliography results. The heat transfer and the dynamics of the fluid 

were examined and analyzed in three different media and by varying the albedo of the diffusion in a range 

between 0 and 0.75 for different optical thicknesses. According to the obtained results, we can say that the LMN 

model approximation highly overestimates the radiative transfer gas to gas and to walls:  The radiative power 

maximum is higher for the absorbing-emitting case. From the results obtained, it was noted that the LMN model 

approximation strongly overestimates the radiative transfer gas to the gas and to the walls:  

  The maximum radiative power is higher for the absorbing-emitting case. The transparent medium has 

given a maximal heat transfer (   ). For participating gases, the absorbing-diffusing medium is more 

effective under the LMN approximation when the opacity is low.  

  The flow is more intense, and the maximum vertical velocity is higher. In the cavity center, the 

isotherms are not horizontal because of the large deformation.  

  For high opacity ( =5), the heat transfer through the cavity is higher for transparent medium. Lower 

velocity magnitudes are observed when the medium is more diffusing, characterized by a higher albedo 

coefficient. The influence of albedo diffusion is particularly significant in flows with thin optical 

thickness. 

This study provides valuable insights into natural convection and radiation in gray media, but its limitations 

include simplified assumptions. The use of a single geometry restricts its applicability. Future research should 

incorporate anisotropic effects, explore various conditions, and consider different geometries, such as inclined 

and trapezoidal shapes, for broader relevance. 

Nomenclature 

Cp, Cv specific heat capacities [J. kg 
-1

. K
-1

] Qr 
dimensionless radiative heat flux    
    (     )⁄  

G gravitational acceleration [m.s
-2

] qrinc incident radiative flux   (W. m
-2

) 

k thermal conductivity[W m
-1

 K
-1

] Qrinc 
dimensionless incident radiative flux,       
     

   
  

L dimensionless radiation intensity   
  

   
  r  ideal gas constant    (     )[J. kg 

-1
. K

-1
] 

Lb 
radiation intensity of the black body [W.m

-

2
] 

Ra Rayleigh number    
        

    
 

H dimension of the enclosure [m] T dimensionless temperature   
     

  
 

Nu average Nusselt number T0 reference temperature    
     

 
 [K] 

 ̅ mean thermodynamic pressure   ̅  
 ̅

  
 t dimensionless time   

    

   

   reference pressure          u, v dimensional velocity-components [m.s
-1

] 

Pr Prandtl number    
  

    
 U, V 

dimensionless velocity-component   
 

   ⁄
      

 

   ⁄
 

Pl Planck number    
    

    
  X, Y dimensionless coordinates   

 

 
      

 

 
 



qr radiative heat flux [W. m
-2

] x, y Cartesian coordinates [m] 

Greek symbols 

  thermal diffusivity,        ⁄ [m
2
.s

-1
]   fluid density, kg m

-3
 

  emissivity   Stefan-Boltzmann constant [W m
-2

 K
-4

] 

   Boussinesq parameter   
  

   
    ⃗⃗ ⃗⃗  direction vector,  ⃗⃗          

  absorption coefficient [m
-1

]   optical thickness, τ =   

  Dynamic viscosity, [Pa.s]    temperature difference,          

    direction cosines   dimensionless pressure,   
   ̅     

    
  

  albedo coefficient   Thermodynamic ratio    
  

  
 

   weight in the direction      

Subscripts 

‘ dimensional variables 0 reference state 

BS Boussinesq model C cold 

R Radiative H hot 

CV Convective T total 
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