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The quick evaluation for the higher heating value (HHV) is crucial for 

thermochemical conversion of solid fuels. In this work, machine learning 

method based on artificial neural networks (ANN) was used to predict the 

HHV of solid fuel. 205 groups of different kinds of solid fuels collected from 

publications were used. The proximate analysis, ultimate analysis and the 

combination of two were used as input parameters. The influence of 

activation function, neuron number and hidden layer number on the 

prediction performance was studied. Results show that single hidden layer 

with logsig function using 8 neurons was an optimized condition for HHV 

prediction. The combination of two composition analyses could achieve 

much higher accuracy, with the average relative error of 2.57%. Impact 

analysis indicated that the non-combustible components, namely ash content 

and oxygen content showed the largest influencing weight for HHV 

prediction, accounting for 21.73% and 22.91% respectively. Particle swarm 

optimization (PSO) and genetic algorithm (GA) were further used to 

optimize the artificial neural network model. Results show that PSO and GA 

both improved the prediction performance of ANN model by optimizing the 

initial weight and threshold values. The average relative errors for PSO-

ANN and GA-ANN decreased to 1.15 % and 1.72 % respectively. 
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1. Introduction  

Waste-to-Energy (WtE) represents a sustainable approach to managing solid waste by converting it 

into energy [1]. Thermochemical conversion technologies are important WtE technologies, which 

include incineration, pyrolysis and gasification, etc., in which solid fuels could be converted into heat, 

electricity, syngas, liquid fuels and chemicals. In the thermochemical conversion process, the 

characteristics of the fuel itself, including elemental composition, industrial analysis and its calorific 

value, are the key factors affecting the fuel conversion process and product distribution.  

The heating value of solid fuels, also known as calorific value or energy content, is a crucial parameter 

that determines their suitability for various applications. The calorific value of solid fuel is usually 

measured experimentally by adiabatic bomb calorimeter [2]. However, the experimental measurement 

of fuel calorific value takes a lot of time, and in some cases, the data of fuel calorific value cannot be 

obtained quickly. Therefore, it is crucial to develop a fast method to estimate the calorific value of 



solid fuels. In the past decades, some scholars have put forward a lot of empirical formulas for fuel 

calorific value prediction. In early period, the empirical formula was widely used to estimate the 

calorific value of coal or biomass. Dulong [3], Mason, García [4, 5] and other researchers proposed 

quite many empirical formulas, which were mainly based on the proximate analysis or ultimate 

analysis [6-8]. In recent years, with the development of solid waste treatment technologies, the 

evaluation methods for calorific values of solid waste is also put forward. Similarly, empirical 

formulas based on solid fuel composition are still the main methods. Bagheri et al. [9] introduced an 

empirical formula that contained the carbon and hydrogen content for evaluation of 252 MSW samples. 

Merza et al. [10] built an empirical formula that contains four element contents, namely C, H, N, S, O, 

to evaluate the HHV of 100 MSW samples. Similar works have also been done by Shi et al. [11], 

Kathiravale et al. [12] and other researchers.  

The empirical formula is simple and fast, but its adaptability to raw materials is weak, and it can only 

predict some fuels with similar composition. Therefore, with the increasing types of solid fuels, the 

traditional empirical formula method has been unable to meet the increasing needs of fuel types and 

complexity. 

In recent years, with the development of computer technology and artificial intelligence methods, the 

use of intelligent optimization algorithms or machine learning methods to build fuel calorific value 

prediction methods has become a more efficient and accurate means. For example, Tan et al. [13] used 

support vector regression for estimation of HHV of coal based on proximate analysis. The average 

absolute errors from estimating the HHV of Chinese and U.S. coals were only 2.16% and 2.42%. Lin 

et al. [14] used swift model for a lower heating value prediction for MSW. The model was applicable 

within this moisture range. Artificial Neural Networks (ANNs) represent the ultimate tool in modern 

computational modeling, where intricate patterns and correlations can be unraveled with 

unprecedented finesse. Taki et al. [15] used machine learning models for prediction the HHV of 

Municipal Solid Waste. The Artificial Neural Network (ANN) was used and proved that ANN’s can 

be used as a practical tool with high accuracy and reliability for HHV evaluation. Güleç et al. [16] 

used ANN modeling for prediction of HHV of biomass. The proximate and ultimate analyses were 

taken as the basic data. The commonly used statistical values, namely correlation coefficient (R
2
) and 

mean square error (MSE), were used to evaluate the modeling performance. Results show that ANN 

models trained by the combination of ultimate and proximate analyses datasets provided more 

accurate predictions than the models trained by individual ultimate analysis or proximate analysis 

datasets. However, only biomass materials were studied and industrial waste and coal were not taken 

into consideration.  

Aiming at the urgent need of fast prediction method for high calorific value of different kinds of solid 

fuels, artificial neural network model is used in this paper to establish fast and accurate prediction 

model for biomass, domestic waste, industrial waste and coal. On this basis, the influences of input 

parameters and neural network structure parameters on prediction accuracy are analyzed. Particle 

swarm optimization (PSO) and genetic algorithm (GA) are further used to optimize the artificial neural 

network model, so as to further improve the prediction accuracy of the model. This work provides a 

more efficient theoretical method for the characteristic analysis of solid fuels and the application of 

thermochemical conversion technologies. 



2. Classic empirical formula for estimating calorific value 

In the past decades, there are quite some methods have been explored for quickly estimating the 

caloric values of solid fuels. In the early years, most empirical formulas were used to quickly predict 

the calorific value of fuels like coal [17]. Classical empirical models include those proposed by 

Dulong et al., Mason et al. and other researchers [7, 8]. These models are mainly based on ultimate 

analysis or proximate analysis results of coal. 

Table 1. Classic empirical formula for estimating calorific value from publications 

Publications Correlation for HHV Fuel types 

Dulong et al. [17] HHV=0.3383C+1.44(H-O/8)+0.0942S Coal 

Dulong et al. [3] HHV=81C+342.5(H-O/8)+22.5-6(9H-W) MSW/Coal 

Boi et al.  [12] HHV=83.22C+274.3H-25.8O+15N+9.4Cl+65P Refuse 

Bento et al. [3] HHV=44.75VM-5.85W+21.2 Refuse 

Mott et al. [12] HHV=0.336C+1.418H-0.0145O+0.0941S Coal/Refuse 

Neavel et al. HHV=145.9C+569.6H-53.89O+43.08S-6.3Ash Coal 

As shown in Tab.1, most empirical formulas that proposed by different researches are mainly 

based on the elemental composition. These empirical formulas could give an estimation for specific 

fuel. Because of the fitting of empirical formulas, mainly for specific fuels, these empirical formulas 

cannot be adapted to many different fuels. For example, coal, biomass, domestic waste, etc., these 

fuels have significant differences in composition, so the traditional empirical formulas cannot meet the 

estimation of the calorific value of different types of fuels. With the increasing combustion disposal of 

solid waste in recent years, there is a need for more general methods for estimating the calorific value 

of different fuels, especially for combustible solid waste. 

3. The ANN modeling method 

3.1. The composition of solid fuels 

With respect to solid fuels, there are mainly two analysis methods, namely proximate analysis and 

ultimate analysis. Proximate analysis provides information about the major components of a material, 

typically focusing on moisture content (MC), volatile matter (VM), fixed carbon (FC), and ash content 

(A). It gives a snapshot of the solid fuel's composition and properties that are important for its 

handling and utilization. Ultimate analysis gives a more detailed breakdown of the elemental 

composition of a material, usually determining the percentages of C, H, N, S, and O (if applicable). It 

provides deeper insight into the chemical structure and potential energy content of the solid fuel.  

 For the calorific value of fuel, ultimate analysis and proximate analysis have a key impact. 

Therefore, the composition and HHVs of different types of solid fuels were collected from 

publications[18-23] and are listed in appendix file. 

A total of 205 groups of solid fuel samples were collected from publications. Because the 

moisture of the fuel has a significant effect on the composition ratio and the calorific value of the fuel, 

the dry basis of the fuel is used in this paper to eliminate the influence of external moisture 

fluctuations. The proximate analysis (ash content, volatile matter and fixed carbon) and ultimate 

analysis (C, H, N, S, O) were used as the main composition. With respect to biomass waste, there are 

other component analysis methods, such as cellulose, hemicellulose and lignin, were not taken into 

consideration in this work. 



By analyzing the composition of different solid fuels, it can be seen that the ash content varies 

from 0.02% (PP) to 39.82% (fish bond). In general, the ash content of woody biomass and plastics is 

generally low, while the ash content of rice husk, rice straw, rubber and food residue is high. The 

volatile matter contents of biomass and plastics are much higher than fixed carbon contents. The 

highest volatile content is 99.97% for PP, which means that almost all combustible matters are 

released during pyrolysis as volatiles. The wooden biomass samples have relative higher fixed carbon 

content.  

The HHV results for these solid fuels vary from 13.29 MJ/kg (Vine shoot waste) to 46.47 MJ/kg 

(PE). Generally speaking, fuels with high ash content and high oxygen content tend to have lower 

calorific values, whereas fuels with low ash content and high carbon content, such as plastics, have 

higher calorific values. 

3.2. The building of the ANN model 

In this section, machine learning algorithms will be used to construct prediction models for high 

calorific value of complex fuels. BP artificial neural network, or Backpropagation artificial neural 

network (BP-ANN), is a type of neural network widely used in machine learning and artificial 

intelligence.  

As discussed above, the HHV of solid fuel mainly depends on the elemental composition and 

proximate analysis of the raw material. With respect to the input layer of the BP-ANN model, there 

are three kinds of networks are built in this work as follows. 

 
Figure 1. The configurations of three networks based on different input parameters 

As shown in Fig.1, different input parameters are chosen to predict the HHV of solid fuels. 

Fig.1(a) shows that the ultimate analysis, namely C, H, O, A (ash) are used as the input parameters, as 

model-1. Proximate analysis, namely Ash, FC (fixed carbon) and VM (volatile matter) are used in 

model-2, as shown in Fig.1(b). Model-3 combines ultimate analysis and proximate analysis, as shown 

in Fig.1(c). 

The determination of the optimal number of neurons in the hidden layer significantly impacted 

the predictive accuracy of the network [24]. Consequently, the influence of neuron quantity on 

prediction performance was carefully evaluated. According to the theory of Artificial Neural Networks 

[25], the appropriate number of neurons could be determined using the following empirical formula 

[26]: 

  √                                                                   (1) 

In this formula, ℎ  represents the number of neurons in the hidden layer,   denotes the number of 

nodes in the input layer, and   indicates the number of neurons in the output layer. The parameter   is 

an adjustment constant ranging from 1 to 10. To achieve optimal prediction accuracy and prevent 

overfitting, the optimal number of neurons was determined through trial and error [27], with ℎ  

varying between 3 and 12. 



In neural networks, the hidden layer's activation function, often referred to as the "transfer 

function," plays a crucial role in determining the output of each neuron in that layer. Common 

activation functions are summarized as follows: 
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Sigmoid function (Logsig) is a Smooth, S-shaped curve. It maps input values to a range between 

0 and 1, which is useful for probabilities. Hyperbolic Tangent function (tansig) is also smooth and S-

shaped but maps input values to a range between -1 and 1. It often performs better than the sigmoid 

function due to its zero-centered output. In this work, the logsig and tansig functions were chosen as 

the activation function for hidden layer. The prediction performance was compared.  

The performance of the ANN models was evaluated using the mean square error (MSE), which is 

defined as follows: 
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In which, the YModel is the output results by the ANN model, YExp is the experimental data, and the 

N is the number of the samples. 

A total of 205 sets of data were used for the construction and verification of ANN model, among 

which 197 sets of data were used for the training, validation and testing of the model. To enhance the 

predictive capability of the ANN model, the datasets were partitioned randomly into training (70%), 

validation (15%), and test (15%) subsets, which are adopted by other works [28, 29]. The network 

underwent training utilizing the Levenberg-Marquardt backpropagation algorithm, with a learning rate 

of 0.01 and a training target minimum error of 0.0001. Eight sets of data (Fruit peel, Wood, 

Newspaper, PE, Rubber, Coconut shell, Vegetal coal and Rice straw) were used for checking the 

performance of the model. 

All the calculation was conducted on the commercial software of Matlab
®
 R2020b (Mathworks, 

Inc., Natick, MA, USA). 

4.  Results and discussion 

4.1. ANN modeling results 

Firstly, the effect of the hidden layer on the ANN modeling performance was studied. Three kinds 

of hidden layer activation function, namely single layer with Logsig function, single layer with Tansig 

function, two layer with Tansig-Logsig function were compared. The effect of the neuron number was 

compared for each kind of hidden layer. The results are summarized in Fig.2 as follows. 

 

 



 

(a)Single hidden layer: Logsig          (b) Single hidden layer: Tansig 

 

(c)Two hidden layer: Tansig-Logsig    (d) Two hidden layer: Tansig-Logsig 

Figure 2. The effect of hidden layer on the ANN performance 

 As shown in Fig.2, both the activation function, hidden layer number and neuron number have 

effect on the modeling performance. As for single hidden layer in Fig.2(a) and Fig.2(b), the MSE 

value initially decreased with neuron number and reached a minimum of 0.00441 and 0.00436 at 

neuron number of 8 and 7 for Logsig and Tansig function respectively. Further adding neuron number, 

the prediction performance decreased. This phenomenon is due to overfitting caused by an excessive 

increase in the number of neurons [30]. Similar tendency occurs for two hidden layer cases in Fig.2(c) 

and Fig.2(d). The two-layer case reached minimum of 0.00341 at 8-5 (8 neurons for Tansig and 5 

neurons for Logsig layer). Therefore, there is an optimized neuron number for all the cases.  

 Although the two-layer hidden network has the lowest MSE value, it is also more prone to 

overfitting. Therefore, overall, using a single hidden layer neural network with Logsig can balance 

prediction effectiveness and better avoid overfitting. Consequently, in the subsequent models 

presented in this paper, a single Logsig hidden layer is adopted as the basic structure of the neural 

network for modeling and predicting the calorific value of different fuels. 

Next, the detailed prediction performance for three models, namely ANN-1, ANN-2 and ANN3 

are compared with experiment data. Eight groups of solid fuels are used. The results are shown in 

Fig.3 as follows. 



 

Figure 3. The comparison prediction performance of different ANN models 

 As shown in Fig.3, ANN-1, ANN-2 and ANN-3 refer to three models that have been 

discussed in Fig.1 above. ANN-1 uses ultimate analysis as input parameter, that show quite good 

performance for fruit peel, wood, newspaper, rubber, coconut shell and rice straw. However, three is 

some difference for PE and vegetal coal. ANN-2 uses proximate analysis, which shows good 

performance for most samples except for rubber. ANN-3 combines ultimate analysis and proximate 

analysis as input parameters, that show the best performance among three models.  

 In order to further analyze the prediction performance among three models, the relative 

prediction errors (RPE) were calculated according to the formula as follows: 

    
   (           )

    
                                                            (7) 

 Based on formula (7), the RPE of three models are calculated and the results are summarized 

in Tab.2 as follows. 

Table 2. The relative prediction errors for three models 

Sample 
Relative prediction error(%) 

ANN-1 ANN-2 ANN-3 

Fruit peel 1.40  2.08  5.26  

Wood 4.03  0.77  3.31  

Newspaper 6.58  15.12  2.58  

PE 12.71  2.34  0.12  

Rubber 4.58  42.07  0.39  

Coconut shell 1.48  6.30  0.37  

Vegetal coal 27.40  2.63  0.34  

Rice straw 2.65  29.56  8.22  

Average 7.60  12.61  2.57  

As shown in Tab.2, the largest RPE value for ANN-1 are 27.4% (Vegetal coal). The largest RPEs 

for ANN-2 are 42.07% (Rubber). It seems that individual ultimate analysis or proximate analysis can 

hardly to cover all samples to obtain high prediction accuracy. With respect to ANN-3, the largest 

RPE is as low as 8.22% (rice straw), which is much lower than ANN-1 and ANN-2. Based on 

individual RPE, the average RPEs for three models are 7.60%, 12.61% and 2.57%. It’s significant that 

ANN-3 has the best prediction performance, while ANN-2 shows the worst performance. Besides, the 

largest RPE is no more than 10% for ANN-3, which proves that ANN-3 is an effective method for 

HHV prediction of solid fuels.  



4.2. The network weight analysis 

The weight and bias of the network is a crucial parameter for the ANN modeling. In order to 

reveal the relative influent of each input parameter on the ANN modeling prediction performance, the 

weight and bias values of the ANN-3 were calculated and analyzed. The weight values that are 

corresponding to each input parameter and the bias values are summarized in Tab.3 as follows. 

Table 3. The weight and bias values of the hidden layers in ANN-3 model 

Neuron 

       Input parameters                          

WAsh WVM WFC WC WH WO Bias 

1 1.8717 0.0923 0.0774 -2.0777 0.3542 -2.8471 -4.0945 

2 2.4723 -1.1051 2.1537 0.3186 -0.1165 -1.9461 -2.8110 

3 -1.6171 0.8509 2.4368 0.7953 1.843 -1.8731 2.1413 

4 -2.0877 -2.5879 0.8235 1.7737 -1.2135 0.1477 -0.7313 

5 1.5048 -1.5501 2.1769 3.317 0.295 -0.275 0.4881 

6 0.8305 -1.2765 2.0813 2.7808 2.1748 0.0957 -1.3645 

7 -1.6733 0.7295 0.9754 -0.9593 1.1753 -2.2153 -2.8354 

8 1.6079 -2.0673 -0.023 0.3029 2.5834 1.5864 3.9613 

As shown in Tab.3, the 7×8 matrix represents the weight values between the input layer and the 

hidden layer nodes. WAsh , WVM, WFC, WC, WH and WO represent the weight of proximate analysis and 

ultimate analysis parameters respectively.  

Based on the weights values in Tab.3, the relative influence of the input variables on the ANN 

model outputs were calculated by formula (8) as follows[31-33]: 
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                                                   (8) 

 In this context, i and m denote the ith neurons in the input layer and their respective indices. 

Similarly, j and n refer to the jth neurons in the hidden layer and their indices. k represents the kth 

neuron in the output layer. Ii signifies the relative influence of the ith input variable on the kth output 

variable. IWj,i denotes the weight from the ith input variable to the jth neuron in the hidden layer. LWk,j 

represents the weight from the jth neuron in the hidden layer to the kth neuron in the output layer. By 

calculating the   , the relative impact of ith input variable on the kth output could be obtained. The 

relative influence of six input variables on the HHV prediction performance are calculated and the 

results are shown in Fig.4 as follows. 

 

Figure 4. The relative impact analysis of input variables on ANN prediction performance 



As show in Fig.4, among six parameters in input layer, the ash content and oxygen content 

contribute the leading impact on the HHV prediction, which are 21.71% and 22.91% respectively. As 

known that oxygen and ash are non-combustible composition for solid fuels, which will lower the 

HHV of solid fuels. With respect to combustible component, carbon content shows the highest impact 

on HHV prediction, which is about 17.39%. Volatile matter shows the lowest impact. The reason is 

that the composition of volatile matter is complicated, which contains not only combustible 

components, such as CO, H2, CH4, but also non-combustible species, such as CO2, H2O. Therefore, the 

impact of volatile matter is weakened. The impact of hydrogen content is also quite low, which is 

attributed to the low concentration in solid fuels (no more than 10 wt%, as shown in Tab.2). 

Therefore, hydrogen contributes less to the HHV than carbon element.  

4.3. The ANN optimization by PSO and GA algorithms 

In this work, two advanced optimization algorithms, namely the genetic algorithm (GA) and 

particle swarm optimization (PSO), were employed to optimize the initial weights and threshold 

values of the network. PSO, pioneered by Kennedy and Eberhart [34, 35], is renowned for effectively 

addressing multidimensional nonlinear problems. Moreover, ANN predictions are prone to local 

optima and overfitting [36], as pointed out above. One notable advantage of the PSO-ANN approach 

is its capability to mitigate the risk of falling into local optima [26, 36, 37]. Therefore, integrating the 

PSO algorithm with the ANN model enhances prediction accuracy and accelerates convergence during 

both network training and prediction phases. 

Similarly, genetic algorithms (GA) represent another optimization method that emulates natural 

heredity and biological evolution, which is used to optimize the weight and threshold values of ANN 

models. The genetic algorithm identifies the individual with the optimal fitness value through 

selection, crossover, and mutation operations. Subsequently, the GA initializes the optimized weight 

and threshold values derived from the optimal individual for the network, enhancing the network's 

prediction performance. 

The principle and flowsheet of ANN model optimized by PSO and GA algorithms was 

summarized in Fig. 5 as follows. 

 

Figure 5. The flowsheet of the ANN model optimized by PSO and GA algorithms 



As shown in Fig.5, instead of random generation of the initial weight and threshold values of the 

ANN, the initial weight and threshold values are optimized by GA and PSO respectively. The 

optimized weights and threshold values are then assigned to the ANN model.  

The comparison of experiment results with prediction results of ANN, PSO-ANN and GA-ANN 

models was conducted and summarized in Fig.6 as follows. 

 

Figure 6. The comparison prediction performance of ANN, PSO-ANN and GA-ANN models 

 From Fig.6, it can be seen that GA and PSO can improve the prediction accuracy of ANN 

model, e.g. for fruit peel, newspaper, while there is a decreases for rubber. In order to analyze the 

prediction accuracy of the three models more clearly, the relative errors are calculated and analyzed, 

and the results are shown in Tab.4. 

Table 4. The relative prediction errors for three models 

Samples 

Relative prediction error(%) 

A

NN PSO-ANN GA-ANN 

Fruit peel 5.26  2.15  3.22  

Wood 3.31  0.83  3.70  

Newspaper 2.58  0.68  2.21  

PE 0.12  1.20  0.44  

Rubber 0.39  2.25  1.65  

Coconut shell 0.37  1.01  0.37  

Vegetal coal 0.34  0.07  0.64  

Rice straw 8.22  1.06  1.52  

Average 2.57  1.15  1.72  

MSE 0.00441 0.00355 0.00382 

 It can be seen that the largest relative prediction error for three models are 5.26 % (ANN, fruit 

peel), 2.25 % (PSO-ANN, rubber) and 3.7 % (GA-ANN, wood). It’s significant that PSO and GA 

algorithms could improve the ANN prediction accuracy and lower the error. Besides, the average 

errors of three models for eight samples are 2.57 %, 1.15 % and 1.72 % respectively. Similarly, the 

MSE of three models are 0.00441, 0.00355 and 0.00382 respectively, which also prove the 

optimization by PSO and GA algorithms. Although ANN-3 has been able to accurately predict the 



high calorific value of different types of solid fuels, and PSO and GA can further improve its 

prediction accuracy, so the combination of this optimization algorithm and machine learning can be 

used to predict the high calorific value of fuel quickly and accurately. This method has a strong 

application prospect. 

5. Conclusion 

In this work, machine learning method based on artificial neural networks (ANN) was used to 

predict the HHV of solid fuel. The main conclusions are summarized as follows: 

(1) Results show that single hidden layer with logsig function using 8 neurons was an optimized 

condition for HHV prediction. The total regression value is 0.95288.  

(2) The combination of two composition analyses could achieve much higher accuracy, with the 

average relative error of 2.57%.  

(3) Impact analysis indicated that the non-combustible components, namely ash content and oxygen 

content showed the largest influencing weight for HHV prediction, accounting for 21.73% and 

22.91% respectively.  

(4) Results show that PSO and GA both improved the prediction performance of ANN model by 

optimizing the initial weight and threshold values. The average relative errors for PSO-ANN and 

GA-ANN decreased to 1.15 % and 1.72 % respectively. 
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Appendix file 

Table 1s. The proximate and ultimate analysis of different solid fuel samples 

Material 
Proximate analysis/wt% Ultimate analysis/wt% HHV 

(MJ/kg) Ash VM FC C H O N S 

Orange peel 2.44 76.27 21.29 43.93 5.64 48.93 1.34 0.07 18.09 

Fruit peel 3.29 77.93 18.78 48.5 6.2 39.5 1.3 0.2 18.63 

Rib 38.22 61.56 0.23 51.61 6.38 31.91 9.48 0.62 14.03 

Fish bone 39.82 56.25 3.93 63.87 8.01 19.08 8.39 0.64 15.79 

Rice 0.4 84.42 15.18 45.97 6.35 45.74 1.69 0.25 18.14 

Rice 0.42 87.74 11.84 44.2 5.73 48.75 1.2 0.1 17.97 

Rice 1.11 86.45 12.45 43.41 6.29 48.44 1.72 0.13 18.09 

China fir 3.53 82.04 14.44 51.47 6.89 41.08 0.4 0.16 20.01 

Pine wood 0.95 83.5 15.54 50.51 5.95 43.39 0.11 0.03 19.64 

Sawdust 0.42 81 18.58 49.42 7.26 42.92 0.39 0.01 21.17 

Wood 3.7 79.45 16.85 50.61 7.45 41.86 0.08 / 18.12 

Wood 0.82 81.64 17.54 48.35 6.62 44.7 0.04 0.29 20.69 

Wood chips 1.95 82.66 15.4 49.54 6.21 44.06 0.12 0.04 19.16 

Wood chips 1.49 87.07 11.45 51.73 4.54 43.5 0.16 0.08 20.18 

Wood chips 3.45 81.5 15.05 49.03 5.69 44.98 0.22 0.07 18.59 

Wooden chopsticks 2.18 83.5 14.37 48.79 5.16 45.7 0.3 0.04 18.93 

Bamboo 1.79 81.36 16.84 51.42 6.01 41.92 0.36 0.29 19.61 

Bamboo 0.69 81.03 18.27 50.46 6.32 42.73 0.22 0.1 19.58 

Bamboo 1.96 80.56 17.48 50.76 5.91 42.98 0.28 0.07 19.34 

Leaves 9.43 74.32 16.25 47.18 5.61 46.35 0.18 0.68 18.36 

Leaves 8.92 73.7 17.38 47.25 5.57 46.26 0.19 0.73 17.19 

King grass 7.44 74.12 18.43 46.91 5.89 46.3 0.7 0.21 17.98 

Blank A4 paper 10.69 79.33 9.98 45.12 5.31 48.91 0.38 0.28 13.51 

Magazine 29.49 62.44 8.07 41.04 8.99 49.15 0.42 0.4 11.82 

Newspaper 1.38 86.37 12.25 49.1 6.1 43 0.1 0.2 19.73 

Newspaper 5.43 85.04 9.53 45.24 7.17 47.1 0.25 0.23 16.27 

Newspaper 9.47 78.19 12.33 46.66 6.25 46.86 0.13 0.09 15.34 

Printing paper 12.3 87.65 0.04 44.93 4.55 50.43 0.09 0 14.23 

Cardboard 9.09 78.8 12.12 49.33 7.94 41.99 0.49 0.25 15.99 

Cardboard 5.27 81.75 12.97 46.09 5.36 48.02 0.32 0.21 17.27 

Carton 7.22 83.95 8.82 48.97 6.14 44.52 0.21 0.16 17.09 

Paper board 14.07 72.27 13.67 49.51 6.29 43.71 0.27 0.22 15.48 

Tissue paper 0.04 95.36 4.6 44.31 6.06 49.43 0.13 0.06 16.85 

Toilet paper 0.52 90.47 9.01 45.18 6.13 48.32 0.25 0.11 17.25 

Cotton 0.41 92.25 7.34 54.2 5.83 39.59 0.29 0.09 21.37 

Cotton 0.68 78.27 21.05 49.91 6 43.68 0.26 0.15 17.53 

Cotton 0.2 96.2 3.59 44.92 9 45.86 0.19 0.03 15.79 

Cotton 1.45 86.7 11.85 46.19 6.12 47.07 0.54 0.08 17.24 

Cotton cloth 3.09 78.71 18.21 56.49 5.87 33.3 3.52 0.18 14.21 



Cotton cloth 1.52 84.53 13.95 46.51 5.8 46.98 0.43 0.28 17.43 

Cotton cloth 0.83 91.65 7.52 45.18 5.66 48.81 0.21 0.14 16.25 

Wool 1.24 84.76 14 60.07 4.24 31.48 2.65 1.55 20.92 

Acrylic fiber 0.14 75.25 24.61 66.78 5.2 7.31 20.26 0.45 29.77 

Polyester taffeta 0.44 90.63 8.93 60.1 4.5 35.11 0.28 0.01 22.08 

Terylene 0.49 88.6 10.91 62.16 4.14 33.12 0.29 0.28 20.86 

PE 0.06 99.94 0 86.66 13.26 0 0.06 0.02 37.6 

PE 0.15 99.85 0 85.94 13.88 0 0.12 0.06 40.98 

PE 0.15 99.85 0 85.45 14.32 0 0.16 0.07 46.31 

PE 0.3 99.7 0 84.97 14.3 0 0.7 0.02 46.47 

PP 0.16 99.84 0 84.3 14.44 1.05 0.18 0.03 45.76 

PP 0.02 99.97 0.01 85.41 12.51 1.85 0.23 0 46.23 

PET 0.09 90.44 9.47 62.93 4.26 32.64 0.04 0.13 23.09 

Rubber 15.28 65.26 19.36 89.18 8.54 0 1.23 1.05 33.4 

Rubber 8.36 84.77 6.86 77.72 10.12 7.42 0 2.66 25.17 

Rubber 5 74.55 20.44 86.7 7.28 2.14 2.42 1.47 37.29 

Tire 3.33 69.25 27.42 85.63 7.86 4.65 0.52 1.34 36.75 

Tire 25.7 68.05 6.25 79.19 8.45 11.38 0.69 0.28 26.49 

Tire 19.27 63.11 17.61 88.56 8.52 0.88 0.75 1.29 30.16 

Tire 4.19 65.44 30.37 83.92 6.83 7.55 0.78 0.92 38.86 

Almond shell 2.2 82 15.8 46.35 5.67 47.46 0.3 0.22 18.28 

Almond tree branches 5.4 75.6 19 47.35 6.36 45.57 0.65 0.16 18.35 

Almond tree leaves 9.3 87.19 3.5 43.25 5.5 48.06 2.85 0.34 17.56 

American oak acorn 3.2 74 22.8 44.68 5.98 48.55 0.6 0.18 17.37 

Apple tree branches 5 74 21 46.24 11.55 41.01 0.81 0.39 17.82 

Apple tree leaves 12 71.9 16.1 44.45 6.15 47.56 1.61 0.23 17.51 

Barley grain 3 76.9 20.1 41.59 6.08 50.18 1.79 0.35 16.52 

Barley straw 6.1 77.9 16 40.69 6.95 50.5 1.64 0.23 17.37 

Bean husk 8 74 18.2 39.66 5.38 53.98 0.66 0.31 15.11 

Beetroot pellets 9 76 15 38.94 5.23 54.13 1.19 0.51 15.1 

Black polar bark 8 71 20.8 43.25 6.33 49.66 0.42 0.34 17.41 

Black poplar leaves 7.8 71.2 21 58.3 8.41 31.92 1.03 0.35 18.17 

Black poplar wood 1.5 86 12.3 46.19 5.7 47.36 0.18 0.56 18.39 

Briquette 0.8 85 14.2 46.74 6.39 45.52 1.24 0.1 18.5 

Building waste chips 0.8 86 13.2 47.26 6.45 46.04 0.08 0.17 18.28 

Cherry stone 0.87 85 14.1 48.57 6.21 44.6 0.43 0.19 19.07 

Cherry tree branches 4.4 74 21.5 46.42 6.21 46.68 0.52 0.17 19.36 

Cherry tree leaves 7.4 71 21.6 45.52 6.25 46.55 1.49 0.19 17.73 

Chestnut shell 3.9 67 29.1 42.31 5.17 51.77 0.42 0.33 14.31 

Chestnut tree chips 1.3 78.2 20.5 45.3 6.1 48.2 0.23 0.17 17.49 

Chestnut tree leaves 4.9 72.41 22.7 47.82 6.24 43.46 2.21 0.27 18.76 

Chestnut tree shaving 0.4 79 20.6 45.88 5 48.73 0.12 0.27 17.62 

Cocoa beans husk 9.96 69 21 43.25 5.89 47.93 2.64 0.29 17.31 

Coconut shell 1.4 79.2 19.4 47.93 6.05 45.63 0.15 0.24 18.88 



Coffee husk 5.8 76.2 18 45.06 6.42 45.51 2.53 0.48 18.33 

Corncob 2.4 83 14.6 44.78 6.02 48.77 0.22 0.21 17.69 

Cypress fruit 4.7 71.8 23.5 27.81 5.7 65.96 0.35 0.18 20.17 

Date stone 1.4 82 16.6 43.37 6.23 49.05 1.03 0.32 18.15 

Eucalyptus bark 6.2 77 16.8 46.53 5.87 45.61 1.69 0.3 16.24 

Eucalyptus chips 1.9 79 19.1 44.77 6.33 48.6 0.14 0.15 16.49 

Eucalyptus fruit 4.7 73.6 21.7 46.81 5.81 45.84 1.14 0.39 18.52 

Feijoa leaves 6.7 71.2 22.1 45.28 6.03 47.25 1.23 0.2 17.81 

Gorse 5 45.2 50.2 43.49 5.53 49.16 1.49 0.33 18.6 

Grapevine branches 7.6 71.5 20.9 45 6.95 46.83 0.76 0.46 16.82 

Grapevine waste 13.3 73 13.7 35.74 5.95 56.67 1.35 0.3 16.47 

Hazelnut and alder chips 5 77 18 45.47 5.94 47.99 0.4 0.2 17.56 

Hazelnut shell 2.2 77 20.8 47.8 6.14 45.64 0.27 0.16 18.87 

Hazelnut tree leaves 8 79 13.4 45.14 6.79 45.71 2.05 0.31 17.87 

Holm oak branch chips 7.4 74.9 17.7 45.65 5.75 45.84 0.76 1.99 17.18 

Horse chestnut burr 5.4 70 24.6 53.38 7.16 38.77 0.45 0.23 17.17 

Horse chestnut tree br. 6.9 73.5 19.6 43.71 6.27 48.54 1.05 0.43 17.47 

Kiwi branches 4.5 74 21.5 46.41 6.09 43.99 1.06 2.44 17.81 

Lemon rind 9.7 73.2 17.1 42.95 6.56 48.98 1.08 0.42 17.18 

Lemon tree branches 4.7 76.7 18.6 54.74 5.72 38.68 0.54 0.33 17.56 

Maize grain 2.1 78.9 19.1 40.96 6.92 50.71 1.17 0.23 16.43 

Mimosa branches 4 75 21 45.81 6.19 47.08 0.75 0.17 17.75 

Medlar tree braches 8.4 74 17.6 44.36 6.17 48.77 0.52 0.18 17.65 

Miscanthus 9.6 79 11.4 47.09 6.3 46.42 0.1 0.1 18.07 

Nectarine stone 1.1 76 22.9 48.57 6.22 44.48 0.5 0.23 19.56 

Oak acorn 2.6 75.1 22.3 41.84 6.82 50.28 0.8 0.25 16.17 

Oak tree branches 4.2 78.4 17.4 48.26 6.28 44.26 2.87 0.33 17.72 

Oak tree leaves 3.8 72 24.2 46.9 5.47 44.2 3.04 0.38 18.31 

Oak tree pruning 4.3 77 18.7 37.89 5.94 55.23 0.73 0.21 17.59 

Oats and vetch 7.33 72 20.7 41.69 5.82 51.27 0.92 0.29 16.66 

Oats bran 4.15 77 18.9 44.01 7.17 46.36 2.17 0.29 18.06 

Olive stone 1.4 78.3 20.4 46.55 6.33 45.2 1.81 0.11 17.88 

Olive tree pruning 13 78 9 45.36 5.47 47.42 1.47 0.28 17.34 

Orange tree branches 4.5 79 16.9 45.76 6.12 47.34 0.56 0.21 16.31 

Orange tree leaves 15.4 73.2 11.4 41.11 5.28 50.62 2.59 0.4 16.17 

Pea husk 4.5 83 12.5 39.62 6.54 50.78 1.24 1.82 15.46 

Pea plant waste 5.8 78 15.9 44.06 4.73 49.91 0.9 0.39 17.35 

Peach stone 0.5 75.6 23.9 40.72 6.95 48.07 3.94 0.3 19.59 

Peach tree leaves 10.2 75 14.7 59.59 9.76 27.86 2.03 0.77 18.34 

Peanut shell 2.5 81 16.5 49.35 6.4 42.96 1.05 0.24 20.09 

Pepper plant waste 22.9 73.1 4 36.56 5.27 53.67 3.66 0.83 13.66 

Pine and eucalyptus chips 3.6 71.6 24.8 45.9 6.3 46.03 1.59 0.19 16.99 

Pine chips 0.6 81.6 17.8 48.15 5.59 45.9 0.09 0.28 19.43 

Pine kernel shell 2.7 77.6 19.7 47.91 4.9 46.28 0.31 0.6 18.89 



Pine pellets 1.3 83.5 15.2 46.83 5.3 47.28 0.28 0.31 18.84 

Pine shaving 0.8 85 14.2 48.67 5.08 45.92 0.07 0.26 19.79 

Pineapple leaf 3.2 75 21.8 42.26 4.81 52.27 0.4 0.27 18.15 

Pinecone heart 3.5 66 30.5 42.22 5.06 51.59 0.29 0.84 16.44 

Pinecone leaf 1.3 80 18.7 47.65 5.43 46.21 0.27 0.44 18.63 

Pineapple heart 3.5 66 30.5 42.22 5.06 51.59 0.29 0.84 16.44 

Pinecone leaf 1.3 80 18.7 47.65 5.43 46.21 0.27 0.44 18.63 

Pistachio shell 1.3 82.5 16.2 44.69 5.16 49.87 0.11 0.18 17.35 

Plum stone 1.8 77 21.2 48.22 6.6 44.14 0.87 0.17 19.14 

Pomegranate peel 6.8 68 25.2 42.19 5.11 51.68 0.69 0.33 15.17 

Potato plant waste 15.8 69 14.7 38.33 5.07 55.03 1.13 0.44 15.07 

rice husk 13.7 73 13.3 26.69 2.88 70.05 0.21 0.17 15.9 

Rye grain 1.8 78.9 19.3 41.11 6.76 50.72 1.2 0.21 16.14 

Rye straw 3.2 79.9 16.9 40.18 6.85 51.48 1.16 0.32 17.11 

Sainfoin 9.2 73 17.8 41.68 5.9 50.05 1.8 0.57 16.41 

Sawdust 1.6 81 17.4 45.34 6.02 47.05 0.53 1.07 18.02 

Sorghum 17 62 21 40.79 4.38 53.87 0.73 0.23 11.87 

Soya grain 4.8 77 18.2 44.42 6.33 47.86 1.16 0.24 16.71 

Straw pellets 9.8 79 11.2 47.89 5.51 45.87 0.56 0.17 16.58 

Sunflower seed husk 1.9 80 18.1 45.33 5.91 48.14 0.38 0.24 18 

Triticale 6.2 75 18.8 42.14 5.8 50.07 1.23 0.76 16.65 

Vegetal coal 5.9 26 68.1 79.34 2.74 16.97 0.65 0.3 29.71 

Vine orujillo 12.7 79 8.3 44.15 5.31 48.04 1.91 0.58 17.74 

Vine shoot chips 9.7 66 24.3 40.15 5.02 53.91 0.61 0.31 14.63 

Vine shoot waste 4.1 64 31.9 34.6 5.61 58.91 0.63 0.24 13.29 

Walnut shell 2.3 79 18.7 46.97 6.27 46.44 0.22 0.1 18.38 

Wheat bran 3.5 78 18.5 42.74 6.62 47.98 2.34 0.31 17.37 

Wheat grain 2.8 80 17.2 49.22 6.52 43.76 0.24 0.26 16.33 

Wheat straw 5.3 76 18.2 45.58 6.04 46.6 1.18 0.59 17.34 

Wood chips 1.5 68.6 29.9 42.2 5.51 51.88 0.13 0.27 15.16 

Wood pellets 1.3 82 17.1 46.7 6.13 46.15 0.6 0.32 18.22 

Wood sawdust 0.6 83 16.4 45.97 5.13 48.53 0.12 0.24 18.21 

Pistachio soft shell 14.21 67.85 8.69 45.53 5.56 47.17 1.74 / 18.57 

Coconut shell 0.71 77.19 22.1 50.22 5.7 43.37 / / 20.5 

Wheat straw 6.9 82.12 10.98 42.95 5.35 46.99 / / 17.99 

Rice husk 21.24 61.81 16.95 38.5 5.2 34.61 0.45 / 14.69 

Sugarcane bagasse 3.2 83.66 13.15 45.48 5.96 45.21 0.15 / 18.73 

Bamboo wood 1.95 86.8 11.24 48.76 6.32 42.77 0.2 / 20.55 

Olive stone 2.2 78.3 19.5 49 6.1 42 0.8 / 20.23 

Almond shell 1.1 80.5 18.4 48.8 5.9 43.7 0.5 / 19.92 

Esparto plant 2.2 80.5 16.8 46.94 6.44 43.56 0.86 / 19.1 

Shea meal 5 66.3 28.7 48.56 5.86 37.3 2.88 / 19.8 

Sugarcane bagasse 5.2 81.5 13.3 43.79 5.96 43.36 1.69 / 17.7 

Cotton stalk 5,1 76.1 18.8 47.07 4.58 42.1 1.15 / 17.4 



Peanut shell 1.7 84.9 13.4 47.4 6.1 44.4 2.1 / 18.6 

Hazelnut shell 1.1 68.9 30 50.9 5.9 42.8 0.4 / 19.9 

Dried grains 3.89 82.5 12.84 50.24 6.89 33.43 4.79 / 21.75 

Corn stover 6.73 66.58 26.65 45.48 5.52 41.52 0.69 / 17.93 

Coffee husk 2.4 78.5 19.1 47.5 6.4 43.7 / / 19.8 

Sugar cane straw 9.2 76.2 14.6 43.5 6.1 41.1 / / 17.19 

Soplillo 1.5 77.8 20.7 48.8 6.5 43.2 / / 22.58 

Lantana Camara leaf 7.26 70.46 11.83 45.01 6.68 43.79 2.02 / 18.5 

Oil palm fruit bunch 4.53 78.2 16.46 45.9 5.8 40.1 1.2 / 16.96 

Olive kernel 1.7 63.9 32.8 54.6 6.8 36.1 0.8 / 22.4 

Olive kernel shell 3.3 60.5 36.1 53.2 6.7 36.3 0.5 / 21.4 

Olive cake 2.8 62.1 36.1 53.7 6.7 36.2 0.6 / 21.6 

Olive kernel 2.13 73.62 24.25 52.44 6.17 37.85 1.32 / 19.9 

Forest residue 0.2 79.8 20 53.16 6.25 40 0.3 / 19.5 

Cotton residue 6.61 72.8 20.59 47.03 5.96 38.42 1.79 / 16.9 

Rice straw 18.67 65.47 15.86 38.24 5.2 36.26 0.87 / 15.09 

Switch grass 8.97 76.69 14.34 46.68 5.82 37.38 0.77 / 18.06 

Willow wood 1.71 82.22 16.07 49.9 5.9 41.8 0.61 / 19.59 

Hybrid poplar 12.49 84.81 2.7 50.18 6.06 40.43 0.6 / 19.02 

Almond hulls 6.13 73.8 20.07 47.53 5.97 39.16 1.13 / 18.89 

Oak wood 4.05 77.45 18.5 48.76 6.35 42.08 2.81 / 19.2 

Pine chips 5.95 72.4 21.65 49.66 5.67 38.07 0.51 / 19.79 

Corn straw 7.65 73.15 19.19 44.73 5.87 40.44 0.6 / 17.68 

Rape straw 4.65 76.54 17.81 46.17 6.12 42.47 0.46 / 18.34 

Palm kernels 5.14 77.28 17.59 48.34 6.2 37.44 2.62 / 20.71 

B-wood 1.85 76.53 21.62 50.26 6.91 39.66 1.03 / 20.05 

Pepper plant 14.44 64.71 20.86 36.11 4.26 41.86 2.72 / 15.39 

Biomass mix 12.49 69.36 18.14 49.59 5.79 28.87 2.43 / 18.4 

Sugarcane bagasse 2.7 82.6 14.7 47.2 7 43.1 / / 17.32 

Rice husk 22.5 61.2 16.3 38.2 5.6 33.7 / / 16.47 

Olive pitts 1.72 82 16.28 52.8 6.69 38.25 0.45 / 21.59 

Pistachio shell 1.41 81.64 16.95 50.2 6.32 41.15 0.69 / 18.22 

Almond shells 3.29 76 20.71 49.3 5.97 40.63 0.76 / 19.49 
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