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In this work, the mechanism instability of heat transfer and fluid flow across 

an electronic device has been conducted in anunsteady two-dimensional 

environment.The pore structure has a constant central heat source Th at 

below and has been cooled with lower temperature Tc from its vertical sides 

moved upper ward with constant velocity V0, while the other walls were 

considered to be thermally insulated.The governing equations of a Darcy-

Brinkman-Forchheimer have been adopted, they are discretized using the 

finite difference method for non-uniform grids and numerically solved 

employing Runge-Kutta fourth-order method.The principal objective of this 

contribution is the investigation of the impact of moving boundaries on the 

occurrence of thermal and dynamical instabilities in the porous space using 

partial heating at the bottom. The calculations have been carried out with 

porosity approaching 1 and a series of mixed convection parameters 

bounded by 0.5 and 35. Reynolds and Prandtl numbers, along with Darcy's 

value, have been fixed respectively to 100, 0.71, and 0.1. The obtained 

results have shown that at different time stations, interesting disturbances in 

the stability of flow have been provided in the current work. Thus, five 

different flow structures were highlighted depending on the Richardson 

number. The employed model can be useful for describing the physical 

behaviors of cooling of the electronic components present in almost all 

devices. 
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1. Introduction 

The problem of heat exchange and fluid dynamics in porous mediums is among the current 

research trends in a huge number of fields, such as the transport of pollutants in groundwater, soil 

remediation, oil and gaz extraction, drying, the semiconductor industry, the thermal design of the 

building, the behavior of certain parts of a nuclear reactor and cooling electronic and electrotechnic 

components, …etc. In biological processes in the human body [1].It also plays a major role in the 

stability of geologically sequestered CO2[2] and contributes to mixed convective heat transfer over a 

solar captor for clean energy production. The theory of perturbation has been developed to study the 

effects of gravity modulation and internal heating through a porous layer by Akhila et al. [3]. It has 

been shown that cell eccentricity, Darcy, and Rayleigh parameters have a significant influence on heat 
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transport. Roy et al. [4] performed numerical simulations of the flow of free-forced convective hybrid 

nanofluids over a shrinkable porous cylinder, revealing that the thermal boundary layer of each 

component with water is narrower than that of the entire mixture. Aly et al. [5] studied the natural 

motion of Al2O3 for three distinctive structures inside a porous cylindrical shape based on the ISPH 

procedure, highlighting clear differences in velocity values and isotherm fields for different structures. 

Using the finite element method, Abderrahmane et al. [6] examined mixed convective flow in a porous 

medium-filled trapezoidal cavity and found that higher Darcy number values improve the heat 

transmission rate. Mourad et al. [7] explored numerically the laminar and natural flow of Cu/H2O 

nanofluid in a porous ring formed by a Koch snowflake, revealing that increasing Rayleigh numbers 

lead to higher intensity of heat transfer inside the annulus. Choudhary et al. [8] investigated three 

different heights of a heat source below a corrugated enclosure saturated with a porous medium using 

the finite difference approach, discovering that the thickness of the thermal boundary layer changes 

depending on the type of vortex formed at the heated area. Xuan et al. [9] thoroughly examined the 

effects of porosity, thermal conductivity, and heating direction on the critical pore size that allows 

natural convection, demonstrating that lower boundary heating plays an important role compared to 

thermal heating of the vertical sides. Virupaksha et al. [10] applied CNNs model to investigate free 

convection in a heterogeneous porous cavity and found that the ED-CNN approach is more effective 

than the Deep Neural Network in allowing the time evolution of flow behavior. Bazneshin et al. [11] 

conducted a numerical study to identify factors affecting the efficiency of latent energy storage based 

on phase change material, revealing that the insertion of a porous structure into the pipe improved the 

capacity of the phase change system by 93%. Rasool et al. [12] used the finite element approach to 

study the transport of carbon nanoparticles in a Z-staggered cavity by water flow, observing that 

increasing Reynolds number decreased the vertical velocity along the centerline of the cavity. Ashraf 

et al. [13] reviewed an oscillatory mixed convective process through a cylindrical configuration 

embedded in a porous medium, finding that transient heat flow and pattern fields are related to the 

amplitude and phase angle. Chakkingal et al. [14] discussed the influence of the height and location of 

packing layers on heat and fluid mechanisms numerically using Ansys-Fluent, revealing differences in 

heat transfer rates for higher Rayleigh values regardless of the location and number of porous layers. 

Luther et al. [15] reported on the role of inclination on the stability of transient convective flow and 

concentration field in a porous layer, observing that onset perturbations were obtained for (90° ≤ θ ≤ 

180°). Kumar et al. [16] documented the thermal stabilization of a swimmer subjected to high 

vibration using the Darcy model, finding that the stabilization nature of the flow broke with increasing 

gyrotactic propulsion. Dalila et al. [17] numerically analyzed the role of moving sides on the nature of 

convective flow in a partially heated cavity filled with a porous medium, noting that dynamic fields 

remained almost similar for lower Darcy values of 0.001 and 0.01.In this context, several scientific 

contributions related to hybrid systems have been made such as the effect of porous media on a three-

dimensional photovoltaic system performance which has been simulated by Sangtarash et al. [18]. It 

was found that the wood is the better material for use in middle configuration but the graphite is not 

recommended for leads to the smallest thermal efficiency for the full configuration at the middle one. 

The impact of using porous materials on the improvement of PV solar systems efficiency has been 

investigated in the article of Meria et al. [19]. The findings shows that adding of porous device 

improved the energy efficiency from 10℅ to 28% while a drop in temperature of the phoovoltaïc cell 

from 5 to 25 degrees Celsius was observed. A wavy-walled cavity filled with an hybrid nanofluid 



involving permeable systems was examined numerically in the paper of Mandal et al. [20]. The results 

reveal an improvement in heat transfer of 261.49% at higher frequencies.In addition, higher 

nanoparticle concentrations result in reduced the flow strength. Mass and heat transfer applications in 

non-Newtonian fluids have drawn a lot of interest in the literature [21]. The authors analyzed the 

porosity and the magnetohydrodynamique Impact on the heat transfer in a permeable cone applying 

the finite difference technique. It's noticed that the incorporation of magnetohydrodynamics and 

porosity effects increases the rate of heat exchange and microorganism diffusion. Employing 

MATLAB with bvp4c method, Zaman et al. [22] studied the boundary layer approximation of 

nanofuid over a slender cylindrical shape. They found that increasing the fluid parameter, the velocity 

profile will rise while the the Brownian motion and Prandtl number lessen the temperature profile. 

The primary objective of this study is to provide a numerical solution for understanding the 

effects of convective regimes on the stability of airflow in a porous substrate by introducing a heat 

source at the center of the bottom. The sliding lids are moved against the direction of the buoyancy 

current. This document has highlighted the unstable, complex, and disorderly nature of the bifurcation 

phenomenon. This model is also applicable in many industrial processes such as heating, air 

conditioning, and cooling of electrical and electronic components to protect them from heat dissipation 

due to their need for higher power. Improving the cooling of these electronic boxes requires the 

injection of airflow through the side walls at lower temperatures. 

2. Problem description and numerical procedure 

2.1. Problem description 

A two-dimensional cell is considered, with moving lids embedded in a homogeneous porous 

material. The lower boundary was heated using a source of size l=4/5L, assumed to be heated at a high 

temperature Th, while all remaining parts of the system were considered thermally insulated. The 

geometric configuration is depicted in Fig. 1. 

 

 

Fig 1. Diagram of the considered problem  

 



2.2. Numerical formulation 

The non-dimentional Navier-Stokes equations describing the flow dynamics in a 2-D cell are 

expressed as: 
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The Darcy-Brinkman-Forchheimer model can be written as follows: 
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The velocity components are: 
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Vorticity equation 
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Stream-function equation 
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Prandtl, Reynolds, Grashof, Richardson, and Darcy numbers are respectively defined by the 

following expressions: 
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Dimensionless parameters are expressed by the following relations: 
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The average Nusselt number is defined as 
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The resolution of the system equations obtained previously requires the incorporation of the 

following initial conditions: 

Initially, the fluid is reset. Eq. (10). 
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The appropriate boundary conditions are: 
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The boundary conditions of the vorticity can be evaluated from Eq.6 according to the following 

expressions: 
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2.3. Numerical procedure 

The obtained system of energy and vorticity equations with corresponding boundary conditions 

was resolved based on finite differences. The discretization of the source term of the energy equation 

and velocities, along with the diffusive terms, has been achieved employing fourth-order central 

differencing. The fourth-order Runge-Kutta method has been adopted for the time stepping of 

temporal terms. A third-order Upwind scheme [23] has been chosen for the convective terms. 

Converged solutions of the stream function at each time step have been ensured using an iterative 

procedure (N.L.O.R) [24]. 



2.4. Grid independence study 

The computation details of typical grid refinement on the heat transfer rate for various Darcy 

numbers are presented in the Table. 1. It should be noted that the independence of the grid system is 

achieved when using a non-uniform mesh of size equal to 101x101 for all subsequent simulations. 

This choice is made because the maximum relative error obtained from this grid resolution is in the 

order of 1% compared to the structure dimension of 201x201. Moreover, this decision is also 

motivated by the balance between precision and available CPU time. 

Table. 1 

Grid refinement effects on the rate of heat exchange at various Darcy number 

Darcy number Grid 

 61x61 81x81 101x101 161x161 201x201 

Da=10-3 6.7279 6.8883 7.2006 7.2159 7.2173 

Da=10-2 14.6815 15.3231 15.1358 15.1364 15.1399 

Da=10-1 14.8832 15.4624 16.1195 16.1202 16.1217 

2.5. Code validation and accuracy 

A comparison of the results obtained with certain works cited in the literature was carried out. 

The first tests of current fields and isotherm contours shown in Fig. 2 are qualitatively in excellent 

agreement with those of Kumar et al. [25]. Then, the minimum and maximum values of the horizontal 

velocity across the vertical mid-plane (see Fig. 3) at Ri=10
-2

 have been compared with those of this 

work. From the Table. 2, it can be seen that the obtained difference does not exceed 3.83%. As can be 

noticed from these tests, the present numerical procedure shows excellent agreement between the two 

cases. 

Table. 2 

Comparison of the obtained minimum and maximum values of the two horizontal and vertical 

velocities respectively along the midplane from the present solution and that of Iwatsu[26], Khanafer [27] 

and Waheed [28] at Gr=10
2
 and Re=10

2
 

Darcy number      Present work Iwatsu             Khanafer Waheed Error % 

Umin -0.2169 -0.2037 -0.2122 -0.21198 2.21 

Umax 1.000 1.000 1.000 1.000 - 

Vmin -0.2354 -0.2448 -0.2506 -0.25107 3.83 

Vmax 0.1761 0.1699 0.1765 0.177125 0.22 

 

 

  



  

Fig1. Pattern fields (top) and temperature distributions (lower row) from Kumar et al. 

[25] (left) and the present model (right) at φ=0.9, Gr=10
4
 and Re=10

3
 

 

 

Fig 3. Comparison of the obtained horizontal velocity along the vertical center line with 

those of the work [25] at φ=0.9, Gr=10
4
 and Re=10

3
 

3. Results and discussion 

The flow presented by this model involving both free and forced convection commonly which 

called mixed convection. Thus, the Richardson number is chosen as the bifurcation parameter because 

it allows us to define the relative importance of these two modes of heat transfer inside the cavity. In 

this section, our goal is to predict the different critical values of Darcy and Richardson numbers 

throughout a range 0.5≤ Ri ≤35 for the occurrence of flow instability and bifurcations inside the square 

porous enclosure with moving lids and heating from below. These operating conditions have been 

chosen to obtain an asymmetric flow structure, taking into consideration perfectly symmetric 

boundary conditions for the physical system under consideration. The Darcy parameter was set to 0.1, 

corresponding to very high permeability, for which the behavior of the porous medium is close to that 

of a pure fluid. The length ratio of the heated part is equal to 4/5. All computations performed here are 

carried out with a very small time step on the order of 2.10
-5

. The Grashoff number was varied in the 

runge from 5.10
3
 to 35.10

4
. 

3.1. Effect of Richardson number when Da=0.1 

The scope of the influence of increasing Richardson value on the average Nusselt number is 

investigated and discussed in this section. The numerical tests have permitted us to observe five 



completely different flow circulations according to the value of this parameter, which are highlighted 

in Fig. 5 by the captures of the stream functions and temperature distributions. 

The flow details of this problem are depicted in Fig. 4. The first type, characterized by a flow 

formed by two counter-rotating and perfectly identical cells, is obtained for Richardson numbers 

whose value is between 0.5 and 6.8. An increment in this parameter to a first critical value equal to 

11.76, results in the flow still being characterized by two counter-rotating but unsymmetrical cells. For 

a value of 11.77 (a difference of 0.1) of this number, we observe a sudden drop in the average Nusselt 

number and a flow type defined by four symmetrical cells. This last flow is maintained up to a second 

critical value of the Richardson number equal to 22.7. When this number becomes equivalent to 22.8 

(a difference of 0.1), we notice a clear increase in the Nusselt number, and we return to a non-

symmetrical two-cell flow, which is maintained until a third critical value of Richardson equal to 25.9. 

Beyond this value, the previous structure transitions to another characterized by two pairs of 

symmetrical cells. 

 

 

Fig 4. Effect of Richardson’s value on the heat transfer rate.  

3.1.1 First critical point ① 

It’s about a transition from a steady-state flow to the beginning of chaos. It can be seen from 

Fig. 6, a slight difference in the average Nusselt value from 5.115 to 5.093 for an increment in 

Richardson’s number from 6.8 to 6.9. The corresponding contour patterns and isotherms have been 

plotted in Fig. 5, which shows a slight difference in the flow domain around this first instability. There 

is a start of change towards an unsymmetrical structure suddenly appearing in the cavity. Adjacent 

fluid layers have been created at the vertical sides under the shear effect of sliding lids, additionally to 

an anticlockwise cell that gradually got bigger was formed at the right half of the enclosure. It should 

be noted from this figure that the effect of a low Richardson’s number on the distribution of isotherms 

is not that much due to thepredominance of lids velocity over the buoyancy forces. 



  

  

Fig 5. Distribution of flow fields (upper row) and isotherms (bottom) for Ri=6.8 (left) and 

Ri=6.9 (right) 

The heat exchange through the heated part of this first instability for these two representative 

values of Richardson number is displayed easily in Fig. 6. In general, the transfer rate decreases 

suddenly during the first moments. Then, it decreases regularly before attaining a constant value   ̅̅ ̅̅  

=5.115 for Ri=6.8. However, it decreases progressively at τ=200 when Ri=6.9 and becomes stable 

towards a fixed value   ̅̅ ̅̅  =5.093 around τ=240. 

  

Fig 6. Average Nusselt number evolution for Ri=6.8 and Ri=6.9 at different time steps 

3.1.2 Second critical point ② 

It’shighlights a significant change in flow behavior before and after this bifurcation. Indeed, it 

changes from a pair of counter-rotating rolls with two different shapes and intensities to four 

symmetrical eddies for the considered values of the same number of mixed regime equal to 11.76 and 

11.77, respectively. In this case, the centrally located two cells adjacent to the hot part become denser 

and thinner, pressing against the other rolls induced by shear forces just towards the moving cell faces 

(see Fig. 7 at the top right). Here, all of the heat energy at the bottom is symmetrically moved upward 

in the form of a thermal feather across the central part of the flow domain. From here, we can say that 

the heat source is dissipated evenly across the sliding walls, and the highest temperatures are located 

in the central region of the closed body. 



  

 
 

Fig 7. Distribution of flow fields (upper row) and isotherms (bottom) for Ri=11.76 (left) 

and Ri=11.77 (right) 

The effects of both values of Richardson’s parameter considered in this case on the heat transfer 

process are plotted in Fig. 8, designated by the evolution of the average Nusselt number at different 

time steps. It is shown from this figure that interesting fluctuations occur during the first moments, 

between 0 and 13 (Fig. 8 on the left). It is also observed that after this disturbance, the obtained value 

of this parameter decreases steadily, as shown on the right-hand side of Fig. 8, stabilizing at a fixed 

value of 5.239 when Ri=11.77. However, a radical change in flow behavior giving rise to a 

"bifurcation phenomenon" was observed for the Richardson value of 11.76, resulting in the transition 

from the first stabilization of   ̅̅ ̅̅  =5.845 to the second one at   ̅̅ ̅̅  =5.470. A bifurcation towards a new 

regime corresponding to the second stabilization begins to occur at τ=120. 

 

 

Fig 8. Evolution of Average Nusselt number for Ri=11.76 and Ri=11.77 at different time steps 

3.1.3 Third critical point ③ 

In this case, we revert to an unbalanced flow regime, as shown clearly in Fig. 9. This illustration 

describes the crucial role of the moving lids in the structure of the flow. There is a significant 

bifurcation that occurs when the Richardson value increases from 22.7 to 22.8. However, in this 

scenario, the large anticlockwise circulation eddy has been oriented towards the right side of the 

enclosure as a result of the interaction between the viscous effect near the moving right and left faces 



and the buoyancy force induced by the heated portion at the lower wall. This competition plays a 

significant role in evenly distributing the heat energy along the right wall. 

  

  

Fig 9. Distribution of flow fields (upper row) and isotherms (bottom) for Ri=22.7 (left) 

and Ri=22.8 (right) 

Here, it's important to note the progression of the heat transfer rate along the heat source, as 

depicted in Fig. 10, which characterizes a fourth type of flow regime consisting of two perfectly 

asymmetric eddies. It's observed from the left side of this figure that the value of this parameter 

oscillates during the initial moments between 0 and 7, then progressively decreases to stabilize at 

a constant value (  ̅̅ ̅̅ =6.903) for Ri=22.7. Suddenly, unpredictable fluctuations are presented (see 

Fig. 10 on the right), gradually subsiding until the second stability is achieved at (  ̅̅ ̅̅ =6.119), 

characterizing a flow defined by two pairs of identical cells. Meanwhile, for Ri=22.8, the transient 

heat transfer evolves towards a fixed value of 6.917, indicating a stable development of the flow 

regime characterized by two perfectly anti-symmetric eddies. 

 
 

Fig 10. Evolution of Average Nusselt number for Ri=22.7 and Ri=22.8 at different time steps 

3.1.4 Fourth critical point ④ 

A similar behavior was observed at the final instability point, with the Richardson number 

between 25.9 and 26. It's evident from Fig. 11 that the corresponding flow patterns and isotherms 

before and after this critical point were significantly altered. It represents a meaningful 

bifurcation towards a new type of flow identified by two pairs of symmetrical eddies after having 



two unbalanced cells that defined the previous state regime. In this instance, the shear forces have 

sufficient capacity to transport all the heat from below to evenly distribute it towards the center of 

the confined space. Fig. 12 indicates a sudden change in the rate of heat transfer from 7.081 to 

6.344. 

  

  

Fig 11. Distribution of flow fields (upper row) and isotherms (bottom) for Ri=25.9 (left) 

and Ri=26 (right) 

For the cases with values of 25.9 and 26 of the mixed convection parameter, a similar trend to 

the second bifurcation was also detected. Visual examination of the average rate of heat transfer 

evolution (Fig. 12) reveals noticeable oscillations at the value of this parameter observed during 

the first instants (τ< 15). Then, it has been progressively decreased to remain stable at a constant 

value of 7.081 for Ri=25.9 (Fig.12 at the left). Meanwhile, at Ri=26, the transient heat transfer 

evolves towards a fixed value equal to 7.062, showing a stable development of the regime flow 

which is characterized by two perfectly symmetric eddies. Suddenly, it presented unpredictable 

fluctuations, which gradually subsided until the second stability was achieved at 6.344, as seen on 

the right of the same figure, characterizing a flow defined by two pairs of equally identical 

counter-rotating rolls. 

 
 

Fig 12. Evolution of Average Nusselt number for Ri=25.9 and Ri=26 at different time steps 

 

 



Conclusion 

In this paper, a modest contribution to the study of mixed convection in analyzing airflow 

confined inside a porous substrate is investigated. A part of the substrate, located in the middle of its 

lower wall, is subjected to a high temperature. Its vertical sides are cooled by a fluid circulating with 

an ascending velocity. Despite perfectly symmetrical boundary conditions, we have shown that 

depending on the value of the Richardson number, several different structures of air circulation and 

temperature gradients can emerge in the considered geometric configuration.The findings indicate 

that: 

- Convective instability may result from the competition between buoyancy source forces and the 

shear forces caused by the sliding lids. 

- We observe four critical points of bifurcation. The first occurs at the transition from a Richardson 

value of 6.8 to 6.9, while the second one is obtained for values between 11.76 and 11.77. An 

increment in this parameter from 22.7 to 22.8 leads to the appearance of a third type of change in 

flow behavior. Subsequently, significant progress toward the final instability phenomenon occurs 

at Richardson values of 25.9 and 26. 
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– Forchheimer coefficient  
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] 
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– Permeability of the porous medium, [m
2
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– length of heat source, [m] 
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– time 
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CNNs 

ED-CNNs 

ISPH 

N.L.O.R 

– Fluid kinematic viscosity, [m
2
s

-1
] 

– Fluid density, [kgm
-3

] 

–Dimensionless temperature 

–Dimensionless time 

–Dimensionless stream fuction 

– Stream fuction 

–Dimensionlessvorticity 

–Vorticity 

Subscripts 

– Average value 

– refers to cold 

– refers to effective property 

– refers to hot 

– refers to X locationof a grid point 

– refers to Ylocationof a grid point 

Acronyms 

– Convolutional Neural Networks 

– Encoder-Decoder CNN 

– Incompressible smoothed Particle 
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