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The double integral-balance approach and Barenblatt’s assumed profile have
been used to create approximate solutions to the Zeldovich equation, both lin-
ear and degenerate. The evaluation of the controlling dimensionless groups and
proper dimensional scaling have been the main focus of the solution developments
and analyses.
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1 Introduction

This note concerns an approximate solution to the Zeldovich equation appearing originally in the combustion
to the flame propagation [1, 2] but appearing also in population dynamics as a version of Fisher’s type models
[3]. Zeldovich’s linear equation ( with D = const.) in a general presentation

∂u

∂t
= D

∂2u

∂x2
+ fz (u) , fz (u) = Gup (1− uq) (1)

The growth function (a term coming from Fisher’s models)fz (u), is related to heat generation dur-
ing combustion and can be presented in several forms such as: fz (u) = bu − dup+1 [4] as an extended
polynomial, or in a compact form (with p = 2 and q = 1) [5] coinciding with the original formulation
fz (u) = u2 (1− u) [1, 2], as well as fz (u) = qu2 + ru3 [6].

This note aims to present approximate solutions to the Zeldovich equation by applying the double-
integration technique [9] of the integral-balance method [7] and the Barenblatt parabolic profile [8, 9] known
also a parabolic profile with an unspecified exponent [10], upon Dirichlet boundary condition in a semi-
infinite domain. The study was motivated by the challenging properties of the integral-balance method to
solve both linear and non-linear diffusion models and to find a solution that differs from the dominating
approach of traveling waves [3, 4, 5, 6].

2 Solution

2.1 Model scaling and dimensionless groups

The model (1) [1, 2, 3, 4, 11] is semi-scaled, because 0 < u = U/Uref ≤ 1 is dimensionless, while there are
no defined length and time scales. A simple inspection of (1) reveals that the coefficient G has a dimension
inverse of time (

[
s−1

]
), and the length scale can be defined as

√
D/G . Hence, changing the variables as

t/(1/G ) = Gt = Fo (the Fourier number, i.e. the dimensionless time) and x̄ = x/
√
(D/G ) we may
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write (1) completely in a dimensionless form, namely

∂u

∂Fo
=

∂2u

∂x2
+ up (1− uq) (2)

The expression (2) has a form frequently used in the literature, with the only difference: the time is di-
mensionless, i.e. represented by the Fourier number Fo . We especially stress the attention on the scaling
and characteristic length and time scales, because they intrinsically appear in the approximate solutions de-
veloped next. Last but not least, since this is important for the further analyses of the results developed, the
products DG (the linear case) has a dimension

[
m2s−2

]
an this leads to a characteristic velocity V0 =

√
DG;

the same is valid in the nonlinear case where the velocity scale is defined by
√
D0G.

2.2 The linear case

Consider the generalized linear formulation (1), with D = const., and its growth function in an extended
form

∂u

∂t
= D

∂2u

∂x2
+Gup −Gup+q (3)

supposing u (0, t) = 1, i.e. Dirichlet boundary condition (the diffusion process starts from the boundary
x = 0 , but not at x → −∞ (as in the traveling wave solution). The double integration applied to (3) [9]
results in the following integral equation

δ∫
0

δ∫
x

∂u

∂t
dxdx =

δ∫
0

δ∫
x

D
∂2u

∂x2
dxdx+

δ∫
0

δ∫
x

Gupdxdx−
δ∫

0

δ∫
x

Gup+qdxdx (4)

Further, assuming an approximate profile as Barenblatt parabola ua = us(1− x/δ )n [8, 9, 10], thus defining
a finite front of the solution δ (t) evolving in time and satisfying the Goodman conditions [7] ua (x = δ) =

∂ua (x = δ)/∂t = 0. The front divides the medium (a semi-infinite ) along the positive axis, into two zones:
ua > 0 for 0 < x < δ , and ua = 0 for δ < x < ∞. The Goodman conditions replace the commonly used
in diffusion problems asymptotic assumption u(x→∞) = 0. Applying the Leibniz rule to the left-hand side
as well as the Goodman boundary conditions during the integration, we get

d

dt

δ∫
0

δ∫
x

u (x, t)dxdx = Du (0, t) +G
up (0, t)

(p+ 1) (p+ 2)
−G

up+q (0, t)

((p+ q) + 1) ((p+ q) + 2)
(5)

dδ2

dt
= D (n+ 1) (n+ 2) + δ2GΦZ (n, p, q)

ΦZ (n, p, q) =

[
(n+ 1) (n+ 2)

(np+ 1) (np+ 2)
− (n+ 1) (n+ 2)

(n (p+ q) + 1) (n (p+ q) + 2)

] (6)

Equation (6) can be presented in a compact form

dδ2

dt
= A+Bδ2, A = D (n+ 1) (n+ 2) , B = GΦZ (n, p, q) (7)

This is a separable equation with a solution δ2 = C1e
Bt − A

B . With the physically motivated condition,
δ (t = 0) = 0 [7] the front position (penetration depth) is

δ =

√
A

B

√
eBt − 1 ⇒ δ =

√
D

G

√
eBt − 1

ΦZ (n, p, q)
⇒ δ =

√
D

G

√
eΦZ(n,p,q)Fo − 1

ΦZ (n, p, q)
(8)
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The product Bt in the exponential function defines the Fourier number Fo multiplied by the dimensionless
factor ΦZ (n, p, q).

For t → 0+ we can approximate eBt ≈ 1 + Bt and then from (8) it follows δ ≈
√
At ≡

√
Dt , and

taking into account that A ≡ D, we have a Gaussian diffusion with a front moving with the square-root law
δ ≈

√
Dt.

For a long time when, i.e.,for eBt >> 1, the front dynamics follows an exponential law, namely

δ (t) ≈
√

D0

G

√
ΦZ (n, p, q) eΦZ(n,p,q)Fo ≡

√
D0

G

√
eΦZ(n,p,q)Fo ≡

√
D0

G
e(ΦZ(n,p,q)Fo)/2 (9)

For p = 2 and q = 1, assuming, for instance, n = 2, we have ΦZ (n, p, q) ≈ 0.185.
Note: Here we especially restrict ourselves to using n = 2 because the focus is on the technology of

solution development but not on its refinement, which is beyond the task of this work.
Hence, the approximate solution is

ua (x, t) =

1− x√
D
G

√
eΦZ (n,p,q)Fo−1

ΦZ(n,p,q)

n

=

1− Z√
eΦZ (n,p,q)Fo−1

ΦZ(n,p,q)

n

, Z =
x√
D
G

(10)

where Z is a dimensionless distance because
√
D/G defines the process length scale.

From (8) we may define the speed of the front as

dδ

dt
=

√
A

B

eBt

2
√

eBt−1
ΦZ(n,p,q)

⇒
√
AG

2

eΦZGt√
eΦZGt−1
ΦZ(n,p,q)

=
V0

2

√
ΦZ (n, p, q)

eΦZGt

√
eΦZGt − 1

(11)

because AB ≡
√
DG = V0; the scaled front speed dδ

dt /V0 is shown in fig. 1-panel a.
Without loss of generality, it is possible to accept that the characteristic velocity is defined as

√
DG/2, as

it is used in the literature [11]; this will simplify the expressions without any effect on the physical meaning.
From eq.(11) we may see what are the asymptotes of the front speed: For eΦZFo ≪ 1 and eΦZFo ≈

1 + ΦZFo we have dδ
dt ∝ V0

2
1√
Fo

and for Fo → 0 (i.e. at the onset of the diffusion process ) the speed

is infinite. This can be explained by the fact that upon the same approximation δ ≡
√
Dt and therefore

dδ/dt ≡
√
D/2

√
t . Further, for eΦZFo ≫ 1 (i.e. long time ), we get dδ

dt ∝
V0
2

√
Φze

(ΦZFo)/2, i.e. an almost
finite speed because the time-dependent term has minimum at ΦZFo = ln2. Upon the conditions imposed
by the present calculations ( n = 2, p = 2, and q = 1 ) we get dδ

dt /V0 ∝ 0.440− 0.498 if Fo is in the range
Fo = 10÷ 15 (actually this happens for Fo > 5, see the plots in fig.1-panel a).

As commented above, for t0+ the product
√

D
G

√
eΦ(n,p,q)Fo →

√
D
G

√
Fo →

√
Dt and then the

ratio η = x√
Dt

defines the Boltzmann similarity variable. Now, we may suggest that the ratio ηZ =
x√

D
G

√
eΦ(n,p,q)Fo

= Z√
eΦ(n,p,q)Fo

defines a new, dimensionless variable ηZ . Then, the approximate profile

can be presented as
ua (ηZ ,Φ) =

(
1− ηZ

√
Φ
)n

(12)

and the front is defined by 1 − ηZ
√
Φ = 0 ⇒ ηZ (front) = 1/

√
Φ ; for short times, we have a transition

ηZ → η . The approximate solution ua(ηZ) and Va = 1− ua(ηZ) are shown in fig. 1-panel b.
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Figure 1 – Approximate solution ( with n = 2) in the linear case for p = 2 and q = 1: a) Scaled front speed
dδ
dt /V0 as a function of the Fourier number; b) The approximate solution ua(ηZ) and the related function Va =
1− ua(ηZ): Note: in this specific case ηZ(front) ≈ 2.320

2.3 An important point that should be clarified

For the sake of clarity, we have to discuss common moments between the present approach and the well-
known traveling wave method [3, 4, 5, 11]. Applying the traveling wave approach to (1), where the solution
is looked for as a simple wave u = ax+ bt (existing only of b ̸= 0 ), there is only one exact solution (when
p = 2 and q = 1 , and b = 1√

2
) [12] ( upon traveling wave boundary conditions [13])

ue (x, t) =
1

1 + eτ
, τ =

(
− 1√

2
t± x

)
1√
2
, ue(x→−∞) = 0, ue(x→+∞) = 1 (13)

In the assumed Barenblatt profile, we have ua (x = 0) = 1., ua (x = δ) ≈ ua (x → ∞) and these boundary
conditions are just the opposite to (13); thus, we have to clarify where the main difference comes from. For
this, if we can construct the function Ve (x, t) = 1−ue (x, t) then we have Ve(x→−∞) = 1 and Ve(x→+∞) =

0. The behaviors of ue and Ve (x, t) = 1 − ue (x, t) are shown in fig. 2-panel a. In a similar way, with the
function Va (x, t) = 1−ua (x, t), based on the assumed profile, we have Va(x→−∞) = 0 and Va(x→+∞) = 1

(see the plots in fig. 2-panel b).
An important point is that with the approximate solution (the Barenblatt parabolic profile), the condition

ue(x→−∞) = 0 ⇒ Ve(x→−∞) = 1 is replaced by ua(x=0) = 1, as well as ue(x→+∞) = 1 ⇒ Ve(x→+∞) = 0

is replaced by ua(x=δ) = 0 ⇒ Va(x=δ) = 1; as a result of the sharp front concept, there are no smooth
transitions of the approximate profiles towards the x axis. Therefore, the approximate solution with the
parabolic profiles ua (x, t) represents the density profile evolution in time along the x axis (this confirms the
analysis made by Newman [11]). The function Va = 1 − ua, satisfies the boundary conditions in (13), and,
to a greater extent, models the pulse approaching unity at x = δ (a condition replacing the second one in
(13) at x → +∞ ).
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Figure 2 – A qualitative explanation of the boundary conditions to (13) and their effect on both the exact solution
(13)-panel a) and the approximate solution-panel b). The linear case [12]: a) in time at three positions at the
x axis: x = 5, x = 10, and x = 15.; b) Along the x axis for three different times represented by the Fourier
number.

2.4 The non-linear (degenerate) case

We now discuss a more general form of (1) with a power-law diffusivity D (u) = D0u
m for the sake of

this note’s completeness. It is well-known that the degenerate diffusion equations have solutions with finite
speeds and sharp fronts such as the assumptions used when the integral-balance approach is applied [9] (and
the references therein for completeness of the available solutions of such problems).

The important point in this solution is that the diffusion term has to be rearranged (before the integration)

∂

∂x

(
D0u

m∂u

∂x

)
=

D0

m+ 1

∂2um+1

∂x2
(14)

Then, applying the double-integration, as in the preceding example, and taking into account that um+1 (0, t) =

1, the equation about the front propagation is

dδ2

dt
=

D0

m+ 1
(n+ 1) (n+ 2) + δ2GΦZ (n, p, q) (15)

ΦZ (n, p, q) =

[
(n+ 1) (n+ 2)

(np+ 1) (np+ 2)
− (n+ 1) (n+ 2)

(n (p+ q) + 1) (n (p+ q) + 2)

]
(16)

That is, we got the same equation as (7) (only the term A is modified).

dδ2

dt
= A+Bδ2, A =

D0 (n+ 1) (n+ 2)

m+ 1
, B = GΦZ (n, p, q) (17)

δm =

√
A

B

√
eBt − 1 ⇒ δm =

√
D0

G

√
eBt − 1

(m+ 1)ΦZ (n, p, q)
⇒ δm =

√
D

G

√
eΦZ(n,p,q)Fo − 1

(m+ 1)ΦZ (n, p, q)
(18)

The increase in the degeneracy of the diffusion term, by an increase in the value of m > 1, results in shorter
penetration depths. The analysis made about the behavior of δm (t) for short and long times, about equation
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(10) is valid here too. The approximate solution in this case is

ua (x, t) =

1− x√
D0
G

√
eΦZ (n,p,q)Fo−1
(m+1)ΦZ(n,p,q)


n

=

1− Zm√
eΦZ (n,p,q)Fo−1

ΦZ(n,p,q)ΦZ(n,p,q)

n

, Zm =
x√

D0
G

√
m+ 1

(19)
It is important to mention that in cases with m > 0 (slow diffusion), the density profiles are convex, with
steep fronts, and are modeled by an exponent n = 1/m [8] (see also [9] for more solutions in detail).

From eq.(18) the front speed is

dδm
dt

=

√
D0G

2

1√
m+ 1

√
ΦZ (n, p, q)eΦZ(n,p,q)Fo

2
√
eΦZ(n,p,q)Fo − 1

=
V0

2

1√
m+ 1

√
ΦZ (n, p, q)eΦZ(n,p,q)Fo

2
√

eΦZ(n,p,q)Fo − 1
(20)

Hence, in general, the front speed is reduced
√
m+ 1 times (see the plots in fig.3-panel a).

For t0+ the behavior is the same as when m = 0. However, when eBt ≫ 1 it is possible to approximate
dδm
dt ≈ V0

2
1√
m+1

√
ΦZ , i.e. there is a limit in the front speed for long time (high Fourier number) as it shown

in fig.3-panel a. The approximate solution ua, parallel to the function Va = 1 − ua, for various Fourier

Figure 3 – Approximate solution ( with m = 2) to the degenerate case for p = 2 and q = 1: a) Scaled front
speed dδm

dt /V0 as a function of the Fourier number; b) The approximate solution ua and the related function
Va = 1− ua along the x axis at various Fourier numbers: Note: in this specific case n = 1/m

numbers, along the x axis, are shown fig.3-panel b. The general behavior is the same as with the linear case,
but the only difference is that the density profiles are convex (a special feature of the Barenblatt profile when
n < 1 [9].

Taking into account that dδ
dt /V0 = 1

2L (n,m, p, q) eΦzFo√
eΦzFo−1

, where 1
2L (n,m, p, q) is the cumulative

prefactor of all time-independent terms, and limFo→∞
eΦzFo√
eΦzFo−1

= 1, it follows that the limited front speed

is predetermined by the prefactor 1
2L (n,m, p, q). The plots in fig. 3-panel a reveal that this finite speed

could be attained at least for Fo > 5.
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3 Conclusions

An attempt to develop integral-balance solutions to the linear and degenerate Zeldovich’s equations re-
sulted in successful and physically relevant approximate density profiles. The solutions developed especially
stressed the attention on correct dimensional scaling and evaluation of the controlling dimensionless group.
It was clearly demonstrated that the Zeldovich equation has its own time, length, and velocity scales—a
problem that is, in general, missing in the dominating studies involved in traveling-wave analyses.
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