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Abstract: Conformable fractional-order grey prediction models have attracted considerable 

attention due to their versatile modeling techniques. However, existing models often suffer 

from limitations in adaptability. To address this, this study proposes a new extended 

conformable fractional-order grey prediction model, namely the ECFGM(1,1) model. By 

integrating an adaptive weighting coefficient into the conformable fractional-order 

accumulation process, the model can effectively prioritize new information, thereby 

enhancing its rationality and adaptability. Moreover, the adjusted process can be tailored to 

either emphasize new information or adhere to traditional accumulation methods, which 

improves its adaptability. To verify the effectiveness of the ECFGM(1,1) model, 

ECFGM(1,1) is applied to two examples from the literature. The model evaluation results 

show that the ECFGM(1,1) model has higher fitting accuracy and predictive accuracy than 

the GM(1,1), CFGM(1,1), and NIPGM(1,1) models. Using the constructed ECFGM(1,1) for 

predictive analysis of the per capita electricity consumption for daily life in China, the results 

show that this model can capture the laws of its changes over time. Finally, per capita 

electricity consumption for daily life in China from 2022 to 2026 is predicted. The results show 

that by 2026, such consumption is estimated to reach 1165.35 KW.h. 

Keywords: Fractional-order grey prediction model; New information priority; Particle swarm 

optimization algorithm; Per capita electricity consumption for daily life 

 

1. Introduction 

The fractional-order grey prediction model encompasses models based on 

fractional-order accumulation operations originating from Wu’s fractional-order cumulative 

operation [1]. These operations replace the traditional first-order accumulation operation in 

grey prediction models, enhancing modeling selectivity and predictive performance. 

Consequently, numerous fractional-order grey prediction models have emerged from 

academia [2-4]. 

Among these models, the fractional order GM(1,1) is considered the fundamental model, 

with the GM(1,1) model serving as the mandatory algorithm to validate new fractional-order 

accumulation operations. Inspired by the work of Wu, various other fractional-order 

accumulation operations have been developed [5, 6]. Notably, the conformable 

fractional-order accumulation operation proposed by Ma et al. has gained popularity due to its 

simpler mechanism of modeling [7]. However, the conformable fractional-order accumulation 

operation exhibits shortcomings. For example, it lacks sufficient attention to new information, 

leading to inadequate model rationality [8]. To address this, this paper proposes modifications 

to the conformable fractional-order accumulation operation. Zhou et al. introduced the 

concept of the new information priority accumulation operation, demonstrating its 



effectiveness across numerous cases [9]. At its core, this approach involves assigning each 

value in a time series a hyper-parameter function that decreases with time.Furthermore, the 

new information priority accumulation operation not only boasts a simple modeling 

mechanism but can also be reduced to a regular first-order accumulation operation,making it 

valuable. This paper integrates the new information priority accumulation operation into the 

conformable fractional accumulation operation to enhance model performance. The resulting 

cumulative operation inherits the advantages of both operations and seamlessly degrades to 

them without loss. Consequently, the model based on this new summation operation has 

improved predictive performance. 

 

The main contributions and content layout of this paper are as follows: 

(1) An extended conformable fractional order accumulating generator operator is presented, 

and based on this, the ECFGM(1,1) model is constructed with a detailed solution process 

provided. 

(2) The classical particle swarm optimization algorithm is used to streamline the solution 

process of the new model, which circumvents the complexities associated with traditional 

mathematical solution algorithms. 

(3) The effectiveness of the ECFGM(1,1) model is verified through two real case studies from 

the literature. The model is also applied to predict and analyze the per capita electricity 

consumption for daily life in China. 

Section 2 details the specific construction and solution process of the ECFGM(1,1) model, 

while section 3 validates its effectiveness using examples from the literature. Section 4 

applies the ECFGM(1,1) model to predict and analyze the per capita electricity consumption 

for daily life in China. Finally, conclusions are drawn in section 5.  

 

2. GM(1,1) model based on the extended conformable fractional order accumulated 

operation 

 

2.1 The traditional GM(1,1) model 

Grey system theory is a relatively important method for studying discrete data sequences 

with a small number of samples and incomplete information [1]. It fully develops and utilizes 

the explicit and implicit information in the existing data to study the future time distribution 

over a specific interval. The traditional GM(1,1) modeling process is as follows. 

 

First, first-order accumulation generation is conducted on the original data series 
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Then, the mean series is calculated: 
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Using this series, the first-order differential equation based on a single variable is established  

and used as the prediction model (i.e., the GM(1,1) model). The standard form of the grey  



differential equation is as follows: 
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The corresponding whitening differential equation is:  
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where a and b are the development coefficient of the system and endogenous control 

greyscale, respectively.  

The formula for estimating the parameter vector ̂  can be written in the form: 
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The time-response function of the GM(1,1) model is: 
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Finally, through a single inverse accumulated generating operation (IAGO), the predicted  

values of the original series, 
(0)ˆ ( )x k , can be obtained:  
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2.2 The CFGM(1,1) model 

Definition 2 [7] For the original sequence
(0)X , the sequence
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while    denotes the ceil function, which returns the smallest integer not less than its 

argument. 

On this basis, by utilizing the differential equation structure of GM(1,1), the CFGM(1,1) 

model can be constructed. 



By combining the conformable fractional accumulating operator with GM(1,1), the 

CFGM(1,1) model can be constructed, and the final predicted sequence is as follows:  
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2.3 The NIPGM(1,1) model 

Definition 1 [9]: For the original sequence
(0) (0)
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 is a nonlinear parameter in the interval [0,1] . 

By combining the new information priority accumulating operator with GM(1,1), the 

NIPGM(1,1) model can be constructed, and the final predicted sequence is as follows: 

 

(0) (1) (1)ˆ ˆ ˆ( ) ( ) ( 1). 2,3,...,x k x k x k k n   
               （11） 

 

2.4 ECFGM(1,1) model 

To enhance the information extraction capability of the grey accumulating operator, 

inspired by Definitions 1 and 2, this paper proposes a definition of an extended conformable 

fractional-order accumulating generator operator. 

Definition 3: If the original non-negative time series is 
(0) (0)

1{ ( )}n

iX x i  , then its extended 

conformable fractional accumulated operation can be expressed as                
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In the equation provided,  and   represent the conformable fractional-order accumulation 

operator and the new information priority accumulation operator, respectively, It is evident 

that when 1  , Equation (1) simplifies to the conformable fractional-order accumulation 

operation. When 1  , Equation (1) reduces to the new information priority accumulation 

operation. Finally, when both 1   and 1  , Equation (1) transforms into a first-order 

accumulation operation. Notably, the extended conformable accumulation operation assigns 

greater weight to new information, aligning with the principle of prioritizing new information. 

It is easy to obtain that the inverse of Equation (12) is 

( ) ( )(0) [ ]( ) ( ( ) ( 1))( )x k x k x k k
   

    
.               (13) 

Based on Equation (12) and the modeling steps of the GM(1,1) model [9], one can give the 

expression for the GM(1,1) model based on the extended conformable fractional order 

summation operation (ECFGM(1,1)), that is,  
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where
 a  and b  are the structural parameters of the model, usually obtained by the least 

squares method. 

The discrete formula of Equation (14) can be obtained as follows:  
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  is called the background value, which is obtained by performing an integral 

operation on Equation (14) over the interval [ 1, ]k k . Usually,  
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Based on Equation (16) and the least squares method, one can give a parameter estimator for 

the model, that is, 
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and n denotes the sample size. 

The time response function of the model is    

( ) ( ) ( 1)( ) ( (1) ) , 1, , ,a kb b
x k x e k n

a a

 

 

    
             (19) 

which is the key formula used to obtain the model’s prediction results. Once the time 

response series is obtained using Equation (8), one can obtain the final prediction of the 

model using Equation (3). 

From the modeling process, it is evident that the hyper-parameters   and   impede 

the model’s solving process. Traditionally, addressing this issue involves treating it as a 

planning problem [10]. However, conventional mathematical methods for solving such 

programming problems are often time-consuming. In this study, we propose employing the 

classical particle swarm optimization algorithm (PSO) [11-12] to rapidly solve the 

programming model and obtain the optimal parameters. 

In this paper, the mean absolute percentage error [13] is adopted as the loss function for the 

planning model. This choice allows us to efficiently optimize the parameters and refine the 

model’s predictive accuracy. 
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Indeed, once the optimal parameters of the model are obtained through the particle swarm 

optimization algorithm, obtaining the final prediction results becomes straightforward. With 

the optimized parameters in hand, the model is equipped to generate accurate predictions for 

the target variable. This streamlined approach enhances the efficiency and effectiveness of the 

prediction process, allowing reliable forecasting outcomes based on the developed model. 

 

3 Validation of the ECFGM(1,1) model  

 

3.1 Evaluation criteria 

Before actual application, this section presents two examples to illustrate the 

effectiveness of the proposed model compared with three competing models: GM(1,1) [1], 

CFGM(1,1) [7], and NIPGM(1,1) [9]. Furthermore, to assess the predictive accuracy of these 

grey models, the mean absolute percentage error (MAPE) and root mean square error 

(RMSE) are used as metrics to evaluate the predictive performance. The definition of RMSE 

is as follows: 
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Lewis gives the criteria used to evaluate MAPE [14], as shown in Table 1. 

 

Table 1: The criteria for MAPE 

MAPE <10 10–20 20–50 >50 

Forecasting ability Excellent Good Reasonable Weak 

 

 

 



3.2 Example verification 

Example 1: Predicting the annual per capita electricity consumption in China 

The data involved in this case are the annual per capita electricity consumption in China 

from 2000 to 2015, as described previously [15]. According to the modeling scale of this 

previous study, data from 2000–2010 are used to train the model, to predict the per capita 

electricity consumption in China in 2011–2015, and to compare it with the actual values to 

test the predictive ability of the model. 

The iterative process of the proposed model is depicted in Figure 1. This figure 

illustrates that the loss function of the proposed model rapidly reaches equilibrium, indicating 

high computational efficiency. Table 2 provides additional parameter details, while Table 3 

presents the results and parameter details of the four models in this case.According to Table 3, 

both the MAPE and the RMSE values of the proposed model outperform those of the 

competing models in both the training set and the test set, affirming its effectiveness. Notably, 

this can be attributed to the fact that the other three models are special forms of the proposed 

method. Moreover, the MAPE of the advanced model GPMB(1,1,2) proposed in the literature 

is 2.97, which is inferior to the MAPE of the proposed model. This underscores the 

significant benefits that the new accumulation operation can bring to the GM(1,1) model. 

 

Figure 1: Track of searching for the optimal power index by PSO. 

 

Table 2: Parameter values for four grey models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ECFGM(1,1) NIPGM(1,1) CFGM(1,1) GM(1,1) 

  0.18 1 0.71 1 

  0.74 0.89 1 1 



Table 3: Simulated and predicted results by different grey models. 

Year 
Actual 

values 

ECFGM(1,1) NIPGM(1,1) CFGM(1,1) GM(1,1) 

Value 
Error 

(%) 
Value Error (%) Value 

Error 

(%) 
Value Error (%) 

2000 1066.9 -- -- -- -- - -- -- -- 

2001 1157.6 1128.76 2.49 1156.76 0.07 1098.26 5.13 1231.25 6.36 

2002 1286 1285.35 0.05 1330.83 3.49 1313.72 2.16 1368.97 6.45 

2003 1477 1475.27 0.12 1514.90 2.57 1518.82 2.83 1522.08 3.05 

2004 1695.2 1695.51 0.02 1709.54 0.85 1723.48 1.67 1692.32 0.17 

2005 1913 1932.22 1.00 1915.38 0.12 1932.75 1.03 1881.61 1.64 

2006 2180.6 2175.23 0.25 2133.04 2.18 2149.85 1.41 2092.06 4.06 

2007 2482.2 2418.89 2.55 2363.21 4.79 2377.11 4.23 2326.05 6.29 

2008 2607.6 2660.47 2.03 2606.61 0.04 2616.45 0.34 2586.21 0.82 

2009 2781.7 2898.88 4.21 2863.99 2.96 2869.56 3.16 2875.47 3.37 

2010 3134.8 3133.77 0.03 3136.17 0.04 3138.03 0.10 3197.09 1.99 

MAPE   1.28  1.71  2.21  3.42 

RMSE   46.66  51.82  51.99  77.90 

2011 3497 3365.20 3.77 3423.99 2.09 3423.38 2.11 3554.67 1.65 

2012 3684.2 3593.33 2.47 3728.35 1.20 3727.16 1.17 3952.26 7.28 

2013 3993 3818.40 4.37 4050.20 1.43 4050.94 1.45 4394.31 10.05 

2014 4132.9 4040.62 2.23 4390.55 6.23 4396.34 6.37 4885.80 18.22 

2015 4321 4260.20 1.41 4750.45 9.94 4765.04 10.28 5432.26 25.72 

MAPE   2.85  4.70  4.82  12.58 

RMSE   116.9  228.63  235.45  638.43 

 

Example 2: Predicting natural gas consumption in China 

The second dataset pertains to China’s natural gas consumption from 2003 to 2013, as described 

previously [16]. In this example, data from 2003 to 2009 are used for model training. The trained 

model is then used to predict the values in 2010–2013 and compare them with the actual values. The 

iterative process of the proposed model is illustrated in Figure 3. Similarly to Case 1, Figure 3 

demonstrates that the proposed model achieves convergence in a very short time, indicating its 

computational efficiency. Table 5 presents the results and parameter details of the four models in this 

case, and Table 4 provides additional parameter details. Referring to the results in Table 4, it is evident 

that the proposed model, along with NIPGM(1,1) and CFGM(1,1), significantly outperforms the 

traditional GM(1,1) model in terms of test set performance. Notably, among the three models, the 

proposed model exhibits the best performance, highlighting the efficacy of combining the two 

accumulation operations. This suggests the soundness of the integration of the two accumulation 

operations. 



 

Figure 2: Track of searching for the optimal power index by PSO. 

 

Table 4: Parameter values for four grey models. 

 

 

 

 

Table 5: Simulated and predicted results by different grey models. 

Year 
Actual 

values 

ECFGM(1,1) NIPGM(1,1) CFGM(1,1) GM(1,1) 

Value 
Error 

(%) 
Value Error (%) Value 

Error 

(%) 
Value 

Error 

(%) 

2003 35 -- -- -- -- -- -- -- -- 

2004 41.5 41.46 0.09 41.5 0.00 41.50 0.00 43.7 5.30 

2005 49.3 49.24 0.12 50.3 2.03 50.28 1.98 50.3 2.03 

2006 58.6 59.33 1.24 59.3 1.19 58.98 0.65 57.9 1.19 

2007 69.2 69.00 0.29 68.4 1.16 67.98 1.77 66.7 3.61 

2008 80.3 78.26 2.54 77.6 3.36 77.47 3.52 76.9 4.23 

2009 85.2 87.13 2.26 87.1 2.23 87.62 2.84 88.6 3.99 

MAPE   1.09  1.66  1.79  3.39 

RMSE   1.19  1.47  1.66  2.44 

2010 94.8 95.60 0.85 96.6 1.90 98.54 3.94 102.2 7.81 

2011 103.1 103.69 0.58 106.3 3.10 110.34 7.02 117.5 13.97 

2012 107.2 111.41 3.93 116.2 8.40 123.13 14.86 135.4 26.31 

2013 119.3 118.77 0.44 126.3 5.87 137.03 14.87 155.9 30.68 

MAPE   1.45  4.82  10.17  19.69 

RMSE   2.18  5.99  12.59  24.48 

 

4. Predicting per capita electricity consumption for daily life in China  

Given the development of the economy and the rise in living standards, the 

significance of electricity in the lives of Chinese people has grown substantially. With 

enhanced power infrastructure in rural regions, increased disposable income, and widespread 

 ECFGM(1,1) NIPGM(1,1) CFGM(1,1) GM(1,1) 

  1.82 1 0.73 1 

  0.55 0.75 1 1 



adoption of various electrical appliances, electricity has become indispensable for daily life. 

Moreover, the surge in the usage of new energy vehicles among Chinese people has further 

elevated electricity demand. Consequently, accurate prediction of per capita electricity 

consumption for daily life is of paramount importance for electricity providers and related 

agencies to formulate effective electricity production plans. For this purpose, empirical data 

on per capita electricity consumption for daily life in China, sourced from China’s National 

Bureau of Statistics (https://www.stats.gov.cn/), are utilized (as listed in Table 7). These data 

span the period of 2005–2017 and are divided into two sets: one for model construction and 

the other for assessing model accuracy. Specifically, data from 2005 to 2017 are employed to 

develop the four prediction models, while the remaining data are reserved for evaluating the 

accuracy of these models. In a manner akin to Cases 1 and 2, the parameters for these models 

are computed and presented in Table 6. The trajectories of   and   using PSO are 

illustrated in Figure 3.  

Furthermore, the simulated and predicted results are detailed in Table 7. Remarkably, 

the proposed method also exhibits a notable convergence rate in this case, affirming its 

feasibility. As shown in Table 7, while the training set MAPE of all models reached a “good” 

level, the MAPE and RMSE of the proposed method were still superior to those of all other 

models. However, a peculiar observation was made in the test set: both the NIPGM(1,1) and 

the CFGM(1,1) models exhibit lower test set results than the GM(1,1) model. This 

discrepancy can be attributed to the fact that both models underestimate the actual values 

during training, resulting in poorer test set performance. In summary, the ECFGM(1,1) model 

demonstrates superior performance in both fitting and prediction stages when compared with 

the comparative models. The 3D bar chart of APE shown in Figure 4 reveals relatively small 

relative errors at each time point, indicating the efficacy of the proposed method in simulating 

and predicting time series changes. Additionally, Figure 5 illustrates that the simulation and 

prediction trends of ECFGM(1,1) closely align with the actual data. 

 

Figure 3: Track of searching for the optimal power index by PSO. 

 

Table 6: Parameter values for four grey models. 

 ECFGM(1,1) NIPGM(1,1) CFGM(1,1) GM(1,1) 

  0.6 1 0.68 1 

  0.1 0.79 1 1 



Table 7: Simulated and predicted results by different grey models. 

Year 
Actual 

values 

ECFGM(1,1) NIPGM(1,1) CFGM(1,1) GM(1,1) 

Value Error (%) Value 
Error 

(%) 
Value Error (%) Value Error (%) 

2005 184 -- -- -- -- -- -- -- -- 

2006 221 220.94 0.03 221.12 0.05 221.00 0.00 254.93 15.35 

2007 256 262.87 2.68 257.15 0.45 260.93 1.93 276.29 7.93 

2008 308 298.86 2.97 292.73 4.96 296.61 3.70 299.45 2.78 

2009 332 331.75 0.08 327.87 1.24 330.25 0.53 324.55 2.25 

2010 366 363.05 0.81 362.56 0.94 362.90 0.85 351.74 3.89 

2011 383 393.78 2.81 396.82 3.61 395.18 3.18 381.22 0.46 

2012 418 424.72 1.61 430.65 3.03 427.49 2.27 413.17 1.15 

2013 459 456.55 0.53 464.06 1.10 460.10 0.24 447.80 2.44 

2014 513 489.89 4.50 497.04 3.11 493.22 3.86 485.33 5.39 

2015 523 525.41 0.46 529.62 1.26 527.02 0.77 526.00 0.57 

2016 548 563.78 2.88 561.78 2.51 561.64 2.49 570.08 4.03 

2017 607 605.75 0.21 593.54 2.22 597.18 1.62 617.86 1.79 

MAPE   1.63  2.04  1.78  4.00 

RMSE   9.56  10.45  9.56  16.90 

2018 650 652.17 0.33 624.90 3.86 633.77 2.50 669.64 3.02 

2019 717 703.99 1.81 655.87 8.53 671.49 6.35 725.76 1.22 

2020 756 762.30 0.83 686.45 9.20 710.44 6.03 786.58 4.05 

2021 808 828.35 2.52 716.65 11.3 750.70 7.09 852.50 5.51 

MAPE   1.38  8.22  5.49  3.45 

RMSE   8.44  55.39  38.34  21.58 

 

Figure 4: 3D bar chart of APE. 



 

Figure 5: Trend of per capita electricity consumption for daily life in China.  

 

Adhering to the preceding modeling process, the future trend of development of per capita 

consumption in China can now be predicted. By applying the ECFGM(1,1) model, the 

predicted outcomes for per capita consumption in China from 2022 to 2026 are derived, as 

presented in Table 8. The predicted results suggest that with the continued proliferation of 

electrical products in rural parts of China and the growing adoption of new energy vehicles, 

per capita consumption for daily life in China will continue to exhibit an upward trajectory. 

This suggests growing consumption of electricity, reflecting the ongoing increase in living 

standards and the evolving energy landscape in China. 

 

Table 8: Prediction results of per capita electricity consumption for daily life in China. 

Year 2022 2023 2024 2025 2026 

Predicted Value 868.41 933.44 1004.19 1081.27 1165.35 

 

5. Conclusion  

This study introduces an innovative and efficient fractional grey model, which represents 

a significant advancement over the classical GM(1,1) model. A novel approach is employed, 

integrating the PSO algorithm to determine two optimal parameters crucial to the newly 

developed accumulation generating operator. Through comprehensive analysis across three 

numerical examples spanning diverse application fields, the efficacy of the proposed 

ECFGM(1,1) prediction model is demonstrated. Specifically, it substantially outperforms not 

only the classical GM(1,1) model but also two recently investigated improved GM(1,1) 

models, namely the CFGM(1,1) and NIPGM(1,1) models, in terms of both fitting accuracy 

and predictive precision. Future research should focus on further exploration of the potential 

of the proposed accumulation algorithm. Specifically, efforts should be directed at integrating 

it with other non-homogeneous grey models, with the aim of validating its practical modeling 

efficacy across a wider array of scenarios and applications. Such endeavors will contribute to 

advancing the field of grey modeling and enhancing its applicability across various domains.  
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