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Blade loss seriously affects the stage efficiency of steam turbine. The Genetic 

Algorithm is used to optimize the NURBS curve of blade profile in governing 

stage. With the maximum value of the function composed of total pressure 

loss coefficient, steam flow Angle and static pressure ratio, the optimized 

blade profile in peak regulating condition is obtained. The flow pattern of 

internal flow field, the load distribution of blade and the development law of 

cascade losses are studied before and after blade profile optimization. The 

results show that after blade profile optimization, larger rotor blade leading 

edge diameter can effectively reduce the influence of steam attack angle on 

the flow field when the volume flow rate is small. The smoother suction 

surface and thinner trailing edge can reduce the end wall loss in the cascade 

passage, which leads to the reduction of the influence area of secondary flow, 

the effective restraint of the boundary layer thickness on the blade surface, 

the reduction of blade loss, and the improvement of flow efficiency of the 

governing stage after optimization. The optimized blade not only improves 

the performance in the peak regulating condition, but also has good 

performance in the design condition. 

 

Key words: steam turbine; governing stage; optimization; genetic algorithm; 

numerical simulation. 

 

1.Introduction 

 

In order to meet the demand of power peak regulation, the thermal power generating units often 

operate at low load, and the main equipment of thermal power generating units is not designed for low 

load conditions, which causes huge deviation between the main operating parameters and the design 

parameters of the generating units under low load conditions, and also causes significant increase in 

the energy consumption of the generating units. For steam turbine, the efficiency of the governing 

stage and the last stage decrease most significantly. When operating under high temperature and 

high-pressure conditions, the governing stage whose blades have a relatively small aspect ratio will 

suffer great blade losses and end wall losses. Such losses will increase under the working conditions of 

low load and small volume flow rate. As a result, the stage efficiency will further decrease. Therefore, 

improving the efficiency of the governing stage under peak regulation conditions can help improve the 

peak regulation capacity of large thermal power generating units, thus making it more flexible to 
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regulate the power grid. 

In order to improve the efficiency of the governing stage under deep peak load condition, the 

blade profile of the governing stage with good performance should be designed. In the optimization 

design of blade profile, automatic optimization method has attracted more and more attention [1]. This 

method which combines optimization technology with flow field calculation can make the design 

process more objective [2]. The automatic optimization method is to try to parameterize the existing 

blade profile, that is, to describe the blade profile data by several important blade profile design 

parameters. At present, there are many published parameterization methods of blade profile, among 

which the construction method [3] is more common. The construction method is to describe the 

accurate blade profile data by constructing function curves. The such common methods include 

polynomial parameterization [4], B-Spline line parameterization [5], Bezier line parameterization [6] 

and NURBS line parameterization [7]. Cheng Jinxin et al. [8] used multi-section Bezier curves to 

reconstruct the characteristic lines of S1 flow surface to parameterize the blade profile of axial 

compressor blades. Cheng Yan et al. [9] developed an efficient integrated design optimization 

approach explicitly tailored for the aerodynamic optimization of turbine blade profiles, which 

combines the Particle Swarm Optimization with a Bezier curves parametric modeling technique of 

turbine blades and high-fidelity CFD simulation analysis. Georgia et al. [10] proposed that arc and 

thickness distribution in NURBS curve construction be used to realize parameterization of blade 

profile. In terms of automatic optimization technology, most researchers adopt numerical optimization 

method based on Genetic Algorithm to optimize the blade design, and the designed blade can not only 

maintain superior performance under design conditions, but also still perform well under off-design 

conditions. Wang Wei et al. [11] introduced entropy production theory into the optimal design of 

two-dimensional blade profiles, and combined genetic algorithm with Navier-Stokes equation solving 

technology to propose a method that can accurately quantify aerodynamic loss at any position of 

cascade, which has been well verified in the design. Song P et al. [12] adopted an optimization 

platform based on the combination of genetic algorithm and CFD to carry out two-dimensional 

aerodynamic optimization of the stator blade profile, pointing out that the load area of the trailing edge 

can effectively inhibit the development of the boundary layer on the cascade surface, and the 

optimized blade profile has also achieved good design results. Yu Jia et al. [13] made use of Genetic 

Algorithm by parameterizing the profiles of two-dimensional blades at different spanwise heights of 

the blades of a multi-stage axial compressor to obtain significant gains in performance. Yang Jutao et 

al. [14] proposed an optimization process to design the baseline rotor of a supersonic through flow fan 

(STFF) at an inlet Mach number of 2.0 based on Genetic Algorithm. The performance of the rotor of 

the STFF that was reconstructed by stacking the optimized elements of the blade was improved at the 

design point as well as in off-design conditions by using three-dimensional computational fluid 

dynamics (CFD) simulations. 

In this paper, the iterative optimization theory of genetic algorithm is applied to the NURBS 

curve optimization of the parameterized blade profile, and the optimized blade profile with good 

performance is obtained under the small volume flow condition. In addition, the steady numerical 

simulation of the stage flow field before and after profile optimization is carried out by using CFD 

method to verify the flow field effect of blade profile optimization, and to explore the influence of 

profile parameters on the blade loss in cascades. 
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2. Numerical Optimization Method 

 

2.1 Parameterization method of blade profile 

 

The purpose of constructing the blade profile by NURBS curve is to solve the NURBS curve 

equations by several important basic blade design parameters. The expressions of the NURBS curve 

equations are as follows: 
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Where ( )uR ki, is the rational basis function, Vi represents the i th geometric control point, Wi is 

the weight of the control point, and ( )uB ki, is the basis function of the k-degree B-spline. 
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Where ui represents a B-spline node and u is a variable. In order to ensure that the curve passes 

through the first and last geometric control points, for k-order B-spline basis functions, there are k＋1 

nodes at each end of the node vector. 
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Fig. 1 Parameters of blade profile 

 

In this paper, two NURBS curves of three degrees are used to describe two dimensional blade 

profile of governing stage blades. A total of 20 blade parameters were selected to construct the 

NUBRS curve. As shown in Fig.1, the selected blade design parameters are as follows: the chord 

length L, the blade installation Angle s, the geometric inlet Angle 0g, the geometric outlet Angle 1g, 

the leading edge inner tangential circle radius R, the trailing edge inner tangential circle radius r, the 
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leading edge tangent wedge Angle 1 and the trailing edge tangent wedge Angle 0. Meanwhile, the 

12 side lengths of control polygons were also selected, which named L1, L2, L3, L4, L5, L6, L1', L2', L3', 

L4', L5' and L6'. Among these parameters, the L and s can determine the axial length of blade. The R, 

0g and 1 are used to determine the starting point of two NURBS curves. The r, 1g and 0 are used 

to determine the ending point of two NURBS curves. The length of L1, L2, L1' and L2' can affect the 

continuity of the leading edge. The length of L5, L6, L5' and L6' can affect the continuity of the trailing 

edge. The length of L3, L4, L3'and L4' can affect the thickness of the blade. Based on this, the NURBS 

curves are well described by the 20 blade profile parameters. 

 

2.2 Genetic algorithm optimization strategy 

 

Genetic algorithm (GA) is an optimization method developed from Darwin's natural selection 

mechanism. Because of the ergodic nature of the evolution process, it is more suitable for global 

optimization of multiple problems. In order to ensure the strength and bearing capacity of the 

optimized blade, the axial length and maximum thickness of the blade should be kept unchanged. 

Therefore, the L, s, L3, L4, L3' and L4' should be consistent with the pre-optimization blade profile. In 

the Genetic Algorithm, six blade design parameters (0g、1g、R、r、1，0) and eight parameters of 

the NURBS curve control polygon side length ( L1、L1'、L2、L2'、L5、L5'、L6，L6') were selected as the 

basic variables. The variable range of these base variables are shown in Table 1. According to the 

requirements of blade profile design, the basic variables were coded after given the variable range.  

The formulation of the objective function plays an important role in the optimization of the blade 

profile. In peak regulation, it is required that the regulating stage should maintain high efficiency even 

under low flow condition. However, the design parameters of the regulating stage can't reflect the 

performance of the whole flow condition. According to the above optimization purposes, the objective 

function should include the total pressure loss coefficient, the range of attack Angle that can adapt to 

the low flow condition and the parameters that can reflect the pressure ratio. Based on this, the 

biological evolution process is simulated with the total pressure loss coefficient, steam flow Angle and 

static pressure ratio in 30% load condition as the optimization objectives. The encoded variables were 

repeatedly selected, crossed and mutated. Each individual was evaluated according to the fitness 

function. The population was continuously evolved into a better group by elimination and selection. 

 

Table 1  The variable range of base variables 

Parameter 0g[°] 1g[°] R [mm] r[mm] 1[°] 0[°] L1[mm] 

Stator 80-100 10-14 1.5-3.5 0.05-0.4 90-125 10-30 0.5-3 

Rotor 18-33 16-19 1.5-3.5 0.05-0.4 80-100 15-35 0.5-3 

Parameter L2[mm] L5[mm] L6[mm] L1'[mm] L2'[mm] L5'[mm] L6'[mm] 

Stator 4-8 18-21 12-16 0.5-3 4-8 12-18 5-9 

Rotor 10-16 33-36 14-18 0.1-3 6-10 12-18 4-8 

 

The multi-objective function can be converted into a single objective function by the weight 

coefficient, and the formula is as follows: 
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In the formula, c1, c2 and c3 are the weight coefficients of the objective function, is the total 

pressure loss coefficient, βΔ  and 
0Δβ  are respectively the steam flow Angle and the target steam 

flow Angle under small flow condition, pΔ  and 
0Δp  are respectively the pressure ratio and the target 

pressure ratio under small flow condition. 

According to equation (4), when the total pressure loss coefficient is minimum, the steam flow 

Angle reach the target value and the pressure ratio is also stable, the objective function will achieve 

the maximum value. The corresponding blade profile would be the optimal blade profile. 

 

2.3 Computing method of 2D flow field 

 

In order to shorten the calculation time, Navier-Stokes equations in any curve-coordinate system, 

finite volume space discretization and four-step Runge-Kutta time propulsion method were adopted to 

solve the results in the calculation program. Baldwin-Lomax model (B-L) was adopted for turbulence 

model. H-shaped grid with orthogonal wall surfaces was adopted, and the grid near the wall was 

appropriately increased in the number of layers. The number of nodes in the flow field calculation grid 

is about 55(horizontal direction) ×175(flow direction). The divided grid structure is shown in Fig. 2. 

    

 
Fig. 2 Grid structure of model       Fig.3 Process of numerical optimization method 

 

In order to balance the contradiction between population diversity and computational efficiency, 

the number of populations is generally between 20 and 100. After the calculation and verification of 

different population numbers, it is determined that the population number is 60. The maximum 

number of generations is 50. After repeated verification, the operator of crossover is 0.75 and the 

operator of mutation is 0.02. The population reaches the maximum fitness of the objective function in 

about 22 generations. The calculation has good repeatability, and the maximum value of the objective 

function can be the same after many calculations. The average optimization time is about 100 hours. 

The overall calculation process is shown in Fig. 3. 

The optimized blade profile generated according to each parameter is shown in Fig. 4. It can be 

seen from the figure that the optimized blade has a larger leading edge radius, a smoother back arc and 

a thinner trailing edge. 



6 

0 10 20 30 40

-30

-20

-10

0

 

 

y

x

 before optimization

 after optimization

0 10 20 30 40 50 60 70

-20

-10

0

10

20

30

 

 

 before optimization

 after optimization

y

x

 

(a) stator                        (b) rotor 

Fig.4 Comparison before and after blade profile optimization 

 

 

3. Three-dimensional Numerical Calculation Method 

 

3.1 Calculation model 

 

In order to verify the effect of blade profile optimization, The Fluent software was used to 

simulate the three-dimensional steady flow field before and after optimization in the governing stage. 

Because the governing stage is usually composed of straight blades with constant cross-section, the 3D 

geometric model can be generated directly generated by stacking 2D blade profile lines along blade 

height. Fig. 5 shows the 3D geometric model of governing stage and its corresponding calculation grid. 

The model includes an extension section at the entrance of the stator, a stator passage section, a rotor 

passage section and an extension section at the exit of the rotor. High quality hexahedral meshes were 

used for the calculation. As shown in Fig. 5, boundary layer meshes were set along the profile lines of 

the stator blade and the rotor blade, and the wall meshes were also precisely processed to ensure the 

calculation accuracy. In addition, isentropic efficiency and total pressure loss coefficient are selected 

to verify the independence of the grid. As can be seen in Fig. 6, when the grid reaches 1.4 million, the 

monitored parameters are no longer sensitive to the number of grids. Therefore, the number of grids is 

divided as follows: 0.65 million in the stator passage and 0.75 million in the rotor passage. The total 

number of grids is about 1.4 million. 
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Fig.5 3D computational models and grids   Fig. 6. Dependence verification of grid number 

 

3.2 Boundary conditions 
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Superheated steam was used as the working medium for the numerical calculation. The inlet 

boundary of the model is set as the pressure inlet, and the outlet boundary is set as the pressure outlet. 

The setting values of inlet pressure, inlet temperature, outlet pressure and the flow rate under different 

load conditions are shown in Table 2. The circumferential surfaces are set as the periodic boundary of 

rotation. The surfaces of blade and hub are set to rotatable adiabatic wall condition and the speed are 

set to 3000 r/min. 

Table 2  Steam parameters of governing stage under different loads 

Load condition 

[%] 

Inlet pressure 

[MPa] 

Inlet temperature 

[K] 

Outlet pressure 

[MPa] 

flow rate 

[kgs
-1

] 

30 6.67 765.15 3.636 278.8 

50 11.11 786.15 6.06 462 

75 16.67 810.15 9.09 585 

100 16.67 810.15 12.12 681 

 

3.3 Numerical method 

 

The finite-volume method is adopted for numerical calculation, the second-order upwind scheme 

is selected for spatial discretization, and the SIMPIE algorithm is used to accelerate the convergence. 

In order to select the correct turbulence model, several different turbulence models were selected for 

numerical simulation using the same boundary conditions as the experiments in literature [15]. The 

comparison between simulation results and experimental results is shown in Fig.7. The turbulence 

models are standard k-ε model, Renormalization-group k-ε (RNG k-ε) model, B-L model and shear 

stress transport (SST) model, respectively. Each model has its own advantages, but no universal model 

has been suggested.  
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(a) temperature ratio              (b) pressure ratio 

Fig.7 Calculation result verification 

The Fig.7 shows the distribution of pressure ratio and temperature ratio along the relative blade 

height at the model outlet. It can be seen that B-L model can better determine the distribution of 

pressure, but not accurate enough to estimate the friction resistance and temperature. Since the 

objective function of 2D profile optimization is concerned with the pressure distribution, B-L model 

can usually give satisfactory results. However, this model no longer works in 3D simulations. In 

contrast, the simulation value of SST turbulence model is in better agreement with the experimental 
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value, and the deviation is within the allowable range. So the SST turbulence model is chosen in the 

calculation to close the Reynolds mean equations. When the calculated residual is less than the order 

of 10
-5

, the calculation is considered to be convergent. 

 

4. Analysis of Results 

 

4.1 Comparative analysis of blade performance under low load conditions 

 

Fig. 8 shows the comparison of streamline distribution at roots of rotor blades before and after 

optimization. As can be seen in Fig. 8 (a), a vortex is formed near the wall at the front of the pressure 

surface before optimization. Due to the smaller leading-edge diameter of the rotor blade and the larger 

attack Angle of flow at the inlet of rotor under small volume flow, the rotor blade is more sensitive to 

the change of attack Angle before optimization, and the stationary point of the leading edge will move 

to the direction of the suction surface. As a result, the overexpansion of the pressure surface at the inlet 

of the rotor is aggravated, the reverse pressure gradient is increased, and the boundary layer is 

thickened. The low-energy fluid in boundary layer which is suppressed in the front of the pressure 

surface by the mainstream forms a vortex. 

As shown in Fig. 8 (b), the leading edge diameter of the rotor blade becomes larger and is no 

longer sensitive to the change of the attack Angle after optimization. The low-energy fluid at the blade 

root will expand along the pressure gradient after bypassing the leading edge from the stationary point, 

and there is no reverse pressure gradient section. Therefore, the increased thickness of the boundary 

layer at the inlet of the rotor has little influence on the flow of the following part, and vortices no 

longer appear near the front wall of the blade pressure surface, thus improving the flow performance at 

the blade root. 

  

(a) before optimization                     (b) after optimization 

Fig.8 Flow line distribution at the root of rotor blade 

 

4.2 Comparative analysis of blade performance under low load conditions 

Fig. 9 shows the energy loss coefficient of the cross section of rotor passage before and after 

optimization. The energy loss coefficient is defined as: 
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Where p0
* is the average total pressure at the inlet of the stage, p* is the relative local total 

pressure, p is the local static pressure, and is the adiabatic index with a value of 1.3. 
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(a) before optimization                   (b) after optimization 

Fig.9 Energy loss coefficient of rotor blade passage section 

 

The energy loss coefficient increases at the trailing edge of the rotor blade. This indicates that the 

boundary layer will gradually thicken with the flow, and the low-energy fluid will gradually 

accumulate in the suction surface. The energy loss coefficient near the exit of the rotor is relatively 

high, and the flow loss will also increase. 

Compared with Fig. 9 (a) and Fig. 9 (b), it can be seen that the energy loss coefficient of the 

section at the rear of the blade has reduced, and the boundary layer has decreased significantly after 

optimization. This is because the loading capacity of the optimized blade profile is improved. The 

pressure drop is mainly located in the rear part of the blade. In this way, the velocity of the steam flow 

in the rear part of the mainstream area is increased. Thus, the thickening of the rear boundary layer of 

the blade surface is inhibited and the flow loss is better reduced. 

 

4.3 Analysis of blade performance in stage under different working conditions 

Fig. 10 compares the blade surface pressure distribution of the governing stage before and after 

optimization. As can be seen in Fig. 10 (a), for the stator blade, the load of blade is increased and the 

loading capacity is improved after optimization at 30% load condition. The pressure drop is mainly 

located in the rear part of the blade, where the speed of the steam flow increases rapidly, thus 

inhibiting the thickening of the rear boundary layer of the blade surface after optimization. For the 

rotor blade, the pressure surface of the leading edge has a reverse pressure gradient due to the 

influence of the Angle of attack before optimization. But there is no inverse pressure gradient on the 

pressure surface of the leading edge after optimization. It is shown that the larger leading edge 

diameter can effectively reduce the influence of attack angle under small flow rate. 

At 50% load condition, as shown in Fig. 10 (b), the blade surface pressure distribution trend is 

basically the same as under 30% load condition, indicating that the optimized blade also has good 

performance under this condition. At 100% load condition, as shown in Fig. 10 (c) , the pressure 

distribution at the leading edge of rotor blade are basically the same before and after optimization. But 

reverse pressure gradient appeared in the middle of the suction surface of the rotor blade, resulting in a 

certain flow loss before optimization. However, the steam flow is squeezed downward by the shape of 

the suction endwall after optimization. The pressure of the suction surface can be faired down and the 

reverse pressure gradient disappears, thus better reducing the flow loss.  

 



10 

0.00 0.02 0.04 0.06 0.08 0.10 0.12

2.04x10
6

2.55x10
6

3.06x10
6

3.57x10
6

4.08x10
6

4.59x10
6

5.10x10
6

5.61x10
6

6.12x10
6

6.63x10
6

 

 

P
r
e
ss

u
r
e
/

P
a

Axial position/m

 stator(before optimization)

 stator(after optimization)

 rotor(before optimization)

 rotor(after optimization)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

3.85x10
6

4.40x10
6

4.95x10
6

5.50x10
6

6.05x10
6

6.60x10
6

7.15x10
6

7.70x10
6

8.25x10
6

8.80x10
6

9.35x10
6

9.90x10
6

1.04x10
7

1.10x10
7

 

 

P
r
e
ss

u
r
e
/

P
a

Axial position/m

 stator(before optimization)

 stator(after optimization)

 rotor(before optimization)

 rotor(after optimization)

 

(a) 30% load condition         (b) 50% load condition 
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(c) 100% load condition 

Fig.10 Blade surface pressure distribution before and after optimization 

 

In blade profile optimization, the flow loss of turbomachinery is mainly measured by parameters 

such as efficiency, total pressure loss or entropy increase. Since entropy increase is the only accurate 

measure of loss independent of reference system, the entropy increase is chosen to characterize 

flow-induced loss. The formula for entropy increase is as follows: 

 1

rotor-out rotor-out
l

stator-in stator-in

ln
pC p T

S
p T
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                       (6) 

Where Cp is the isobaric specific heat capacity; is the adiabatic index, taking the value as 1.3 for 

superheated steam; protor-out and Trotor-out are the pressure and temperature of the rotor outlet; pstator-in and 

Tstator-in are the pressure and temperature of the stator inlet, respectively. 
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(a) before optimization              (b) after optimization 

Fig.11 Distribution of entropy increase at cascade outlet under 30% load condition 
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(a) before optimization                 (b) after optimization 

Fig.12 Distribution of entropy increase at cascade outlet under 50% load condition 
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(a) before optimization                 (b) after optimization 

Fig. 13 Distribution of entropy increase at cascade outlet under 100% load condition 

 

It can be seen from Fig. 11 to Fig. 13 that the location where entropy increases the most at the 

cascade exit is in the wake region. The wake region is composed of low energy boundary layer fluid 

flowing from the suction surface and vortex shedding from the outlet. The flow loss across the wake 

region increases and decreases abruptly, but the peak value of loss is basically near the center of the 

wake region. The greatest loss occurs at the tip of the blade in the center of the wake region, which 

also contains secondary flow loss at the end wall. In short, the wake zone contains almost all flow loss 

around the flow profile. 

As shown in Fig. 11, under 30% load condition, the peak region of wake loss decreases after 

optimization, and the entropy increase at the tip of the blade also tends to decrease. This is because the 

curvature of the suction-blade profile increases after optimization. This results in a thinner trailing 

edge, and improves loading capacity of the latter half of the blade. At the same time, the larger leading 

edge diameter and the thinner exit edge also reduce the secondary flow loss of the endwall in the blade 

cascade with large turning angle. 

As shown in Fig. 12 and Fig. 13, under 50% and 100% load condition, the peak region of wake 

loss of the optimized blade profile also decreases, indicating that the flow loss is also effectively 

controlled under the conditions. At the same time, the secondary flow loss at the tip of the blade is also 

significantly reduced. 

Table 3 shows the overall aerodynamic performance of the governing stage before and after 

optimization. After optimizing the blade profile of the governing stage through Genetic Algorithm, the 

isentropic efficiency of the governing stage is improved not only in the small flow condition, but also 

in other conditions. Within the calculated range, the maximum isentropic efficiency is increased by 

1.66% under 30% load condition. Under the 100% load condition, the isentropic efficiency of the 

governing stage is also increased by 0.87%. It is indicated that the adaptability of the governing stage 
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to the operating conditions is improved after the blade optimization, which can also further improve 

the peak load regulation capacity of the unit. 

 

Table 3  Comparison of isentropic efficiency before and after profile optimization 

Parameters 

isentropic efficiency[%] 

100% 

load condition 

75% 

load condition 

50% 

load condition 

30% 

load condition 

Before optimization 90.80 90.20 83.46 78.26 

After optimization 91.67 90.85 84.71 79.92 

 

4. Conclusions 

 

(1) The numerical optimization method based on the Genetic Algorithm can be used to optimize 

the NURBS curve of the blade profile of the governing stage, which can realize the optimization of the 

blade profile, and significantly improve the cascade performance after optimization. 

(2) After optimization, the larger leading edge diameter can restrain the low energy flow and 

improve the performance of the rotor blades. The smoother back arc and thinner trailing edge can 

reduce the end wall loss in the blade passage of the governing stage and increase the load of the blade, 

effectively inhibit the boundary layer thickness on the blade surface, reduce blade profile loss, and 

improve flow efficiency. 

(3) After optimizing the blade profile of the governing stage by the Genetic Algorithm, the 

isentropic efficiency of the governing stage increases by 1.66% and 0.87% at the small flow condition 

and the design condition respectively, and has different degrees of improvement in other operating 

conditions. The optimization of the blade profile can further improve the peak load capability of the 

steam turbine unit. 

 

Nomenclature 

 

Cp –isobaric specific heat capacity, [Jkg-1K-1
] Greek symbols 

n –rotation speed, [rmin-1]  –adiabatic index, [–] 

P(p) –pressure, [Pa]   –density, [kgm-3] 

T –temperature, [K]   –dynamic viscosity, [Nsm
-2

] 

u –variable, [–]  –total pressure loss coefficient, [–] 
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