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In recent years, q-Bernstein polynomials and α-Bernstein polynomials have 
emerged as prominent topics in approximation theory. Numerous studies have ex-
amined the convergence criteria of these polynomials, highlighting their impor-
tance and usefulness. The main idea underlying the article is that the kernels of 
these polynomials depend on the probabilities of the variable parameter binomial 
distribution. Taking advantage of this property, we developed a simplified form of 
these polynomials regarding binomial dependence. This facilitated the calcula-
tion of moments for a binomial variable with variable parameters. This method 
both simplifies the computational processes and allows us to better understand the 
convergence properties of these polynomials. By examining these reduced forms, 
important information has been obtained regarding the structure of the underly-
ing distribution. The findings underscore the versatility and power of q-Bernstein 
and α-Bernstein polynomials in approximation theory and provide a deeper under-
standing of their mathematical foundations and potential applications.
Key words: approximation theory, Bernstein polynomial, Bernoulli process, 

convergence, expected values

Introduction

The polynomials stand out with their various advantages in many fields, from math-
ematical analysis to engineering. In essence polynomials are fundamental tools for modelling 
and solving countless problems in different disciplines. They are easy to analyze thanks to their 
continuous and differentiable structure, which offers great practicality in operations such as dif-
ferentiation and integration. In addition, the structural simplicity and flexibility of polynomials 
make them a powerful tool in many fields such as mathematical modelling, statistical analysis 
and signal processing. In these aspects, polynomials offer a versatile benefit by providing ease 
of calculation and flexibility in both theoretical studies and practical applications.

This study focuses on Bernstein polynomials, a special class of polynomials known 
for their significant applications. Bernstein polynomials are widely used due to their simple 
structure and valuable properties. They are particularly important in approximation theory, 
which deals with approximating complex functions using simpler and more manageable func-
tions. This theory is crucial because working directly with functions with unknown or com-
plicated properties can be challenging. By approximating these functions with well-known, 
simpler functions, researchers can derive useful results more easily.
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Approximation theory addresses whether it is possible to convert complex functions 
into polynomial functions and how closely such approximations can represent the original func-
tions. This process of approximation is vital in various fields, providing a way to work with 
functions that are otherwise difficult to handle. By using polynomial approximations, research-
ers and practitioners can simplify their analyses and obtain more tractable solutions to complex 
problems. It can be said that approximation by polynomials is perhaps the most important 
branch of approximation theory. Today, Bernstein polynomials are mostly applied in the field 
of approximation theory [1, 2]. Recent studies on the approximation properties of blending-type 
modified Bernstein-Durrmeyer operators have demonstrated that these operators possess strong 
approximation characteristics [3]. In a recent study, a new type of coupled Bernstein opera-
tors for Bezier basis functions was introduced, demonstrating their approximation properties, 
including the establishment of a local approximation theorem and a convergence theorem for 
Lipschitz continuous functions [4]. In a recent study, a novel method for approximating the 
Koopman operator using Bernstein polynomials was proposed. This approach provides a fi-
nite-dimensional approximation and characterizes approximation errors with upper bounds ex-
pressed in the uniform norm, covering various contexts including univariate and multivariate 
systems [5]. In a recent study, a new class of Bernstein polynomials based on Bezier basic func-
tions with a shape parameter λ ∈ [−1, 1] was examined. The study provides a Korovkin-type 
approximation theorem and demonstrates improvements in error estimation in some cases by 
comparing these operators with classical Bernstein operators [6].

Feller’s [7] basic book contains a lot of the most recent work on accomplishment 
studies in the Bernoulli trials. Let be the sum of the n independents’ Bernoulli trial victories. 
The majority of the distribution’s characteristics and associated theorems are well-known and 
covered in numerous statistical publications and studies when the trials are identical. The prob-
ability mass function plays a crucial role in the q-Bernstein polynomial, as demonstrated by 
Charalambides [8]. The variance and anticipated value were computed using this probability 
function.

There are two potential results from the single experiment in the Bernoulli procedure. 
When the intended circumstance materializes, it is deemed a success; when the undesirable 
circumstance materializes, it is deemed a failure. Let k represent how many of the n separate 
Bernoulli tests were successful:
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= − = … 
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(1)

where x is the probability of success in a single Bernoulli trial and pn.k(x) is the probability of k 
successes in n trials [9].

Many studies have been conducted on the approximation of real-valued continuous 
functions for an extended period. One of the key theorems commonly used in functional anal-
ysis is the Weierstrass Approximation Theorem. This theorem states that any function that is 
continuous over a closed interval can be uniformly approximated by polynomials. Bernstein 
[10] demonstrated this approximation theorem in its most basic form in 1912.

Researchers now favor Bernstein operators since they are simpler and have substan-
tially distinct approach features. Lupas [11] introduced the q-Bernstein theory as a scientific 
advance. Acu [12] has researched many Bernstein operator generalizations. Cardenas-Morales 
[13] introduced the new series of linear Bernstein-type operators and studied the q-generaliza-
tion of these operators. It is also helpful to note that there are a lot more generalizations of the 
Benstein operators that can advance science.
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Positive operators obtained with the help of the binomial distribution

Bernstein’s Weierstrass theorem was proved in 1912 using Bernstein polynomials, 
which were subsequently employed in the proving of numerous other theorems. One common 
example is the Korovkin theorem.

Let f : [0, 1] → R. The Bernstein polynomial of f :
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where Bn(f;x) is called Bernstein operators of order n for f [14].
Statistical convergence, lacunary statistical convergence, and statistical summability 

(C, 1) were used in [15] to prove a few Korovkin-type approximation theorems. The Korovkin 
approximation theorem [16] will now be discussed.

Theorem 1. Let (Tn) be a sequence of positive linear operators from C[a, b], into  
C[a, b]. Then limn||Tn(f, x) – f(x)||∞ = 0, for all f ∈ C [a, b] if and only if limn||Tn(fi, x) – fi(x)||∞ = 0, 
for i = 0, 1, 2 where f0(x) = 1, f1(x) = x, and f2(x) = x2 [17].

Convergence criteria

Definition 1. Let the function f be continuous in the interval [a, b]. The ω(δ) function:
( ) ( )

1 2 1 2sup ( )x x f x f xδω δ − ≤= − (3)
with x1, x2 ∈ [a, b] for the real number δ > 0, is the modulus of continuity of the function f [18].

This function will take values based on f, the interval [a, b] and the chosen δ > 0. Let’s 
continue the features of ω(δ) modulus of continuity:
	– For 0 < δ1 < δ2, ω(δ1) ≤ ω(δ2). 
	– The limδ → 0 ω(δ) = 0. When function f is continuous in the interval [a, b].
	– The ω(λδ) ≤ (1 + λ) ω(δ) for the real number λ >0.

Let us express the theorem that enables to evaluate the difference |Bn(f; x) – f(x)| with 
the help of the modulus of continuity.

Approximation theorem

Let {Xn : n = 1, 2, ...} be a sequence of independent random variables where Xn has a 
distribution with parameters (n, x). Where n represents the number of trials, and x represents  
the probability of success. Let f be the real-valued function defined on the real interval [a, b] 
such that f (m) ∈ C[a, b] and Ln(f, x) = Ef(Xn) < ∞. Then for any x ∈ [a, b] and any δ > 0: 
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where bk = bk(n, x) = E(Xn – x)k

 
for k = 0, 1, ..., m is kth moment of random variable Xn around x, 

ωm(1/δ) is the modulus of continuity of f (m) [19].
In next section of the paper, a theorem stating that the kernel of the Bernstein polyno-

mial P(Sn = k) is equal to pn,k(x) is presented, which is different from the one in source [8]. The 
proof of this theorem is carried out using the method of induction. The expected value and vari-
ance of this probability function have also been calculated. Using the approximation theorem, 
an upper bound for the convergence of this operator has been determined. This upper bound 
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indicates how quickly the operator converges under certain conditions, which is important for 
practical applications.

In the section Reduced form α-Bernstein polynomials and probabilistic interpretation, 
information is first provided about the a-Bernstein operator, which was introduced by Chen 
et al. [20]. Using this operator, the expected value and variance of the resulting probability 
function have been obtained. Again, using the approximation theorem, an upper bound for the 
convergence of this operator has been determined.

Reduced form of q-bernstein polynomials  
and probabilistic interpretation

Philips [21] introduced a generalization of the Bernstein polynomial q, which varies 
according to the integer values of q. Following this development, numerous authors have ex-
plored this topic from various perspectives. Given that q-Bernstein polynomials are positive 
linear operators on C [0, 1], the case of 0 < q < 1 is typically the focus of investigation. For each 
positive integer n, Bn(f, q; x) q-Bernstein polynomials:
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when q = 1, Bn(f, q; x) is the classical Bernstein operator. The q-Bernstein polynomial shares the 
shape-preserving properties of the classical Bernstein polynomial.

Let q > 0. For each non-negative integer l, the q-integer [l], q-factorial [l]!, and q-bi-
nomial [nr] (n ≥ l ≥ 0) are defined:
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respectively [22]. Additionally, [0]! := 1. 
Theorem 2. Let a sequence {qn} satisfy 0 < qn < 1 and qn → 1 as n → ∞. If f ∈ C[0, 1] then:

	 Bn(f, q; x) →→ f(x) for x ∈ [0, 1] as n → ∞ [23]. 
Direct calculations show that for 0 < q < 1: 

 	 ( ) ( ) ( )2 2 2, ; 1 1 , [0,1] asnB t q x x q x x x x n+ − − ≠ ∈ →∞

Therefore, in general, the sequence {Bn(f, q; x)} is not an approximating one for the 
function f [9].

Probabilistic properties of q-Bernstein polynomials

When discussing probability questions, the likelihood of a desired circumstance or 
event can always be discussed. The experiment is known as the Bernoulli test if two outcomes, 
such as successful or failed, are obtained for a trial and the trial may be repeated under the same 
circumstances. Discrete distributions are based on the Bernoulli trial.

Let’s express it as the sum of the events of Bernoulli such that Sn = X1 + X2 + ... + Xn. 
Since the sum of the Bernoulli trials will give the binomial distribution, Sn ~ pn,k(x) can be writ-
ten. So the expression can be written for Sn:
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Since the kernel of the Bernstein polynomial provides the properties pn,k(x) ≥ 0 and 
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it can be regarded as the probability function of a random variable. From the equation  
P(Sn = k) = pn,k(x), k = 0, 1,..., n, the Bernstein polynomial can be written in the form of the ex-
pected value of the Sn random variable with the help of the expected value operator E:
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(8)

Kernel distributions of the q-Bernstein polynomial

If the Bernstein polynomial is shown as in eq. (2), the term q must be added on success 
possibilities of X1, X2,..., Xn Bernoulli in order to express the q-Bernstein polynomials in the 
same way. Accordingly:
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to define the number of j experiments can be written. Also s denotes the number of unsuccessful 
attempts in trials up to j-1. 

Example 1. The probability values obtained for n = 3 using the probability expression 
in eq. (9) can be derived as follows.

For n = 3, k values are 0,1,2 and 3, respectively:
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Proof. Now let’s show that:
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using the method of mathematical induction. For n = 1, k values are 0 and 1, respectively:
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Now let’s show that for n = k +1:
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Thus it is proved that:
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Approximation using the distributions

To obtain an approximate value, it is necessary to calculate the E(Xn
*– x)2. In this case 

eq. (10) is obtained:
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In approximation theorem eq. (3), if m = 0 is taken specially:
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is given. According to this, when Ln = Bn,k and δ = (n)1/2 are taken, eq. (12) is obtained:
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Reduced form of α-Bernstein polynomials  
and probabilistic interpretation

The α-Bernstein polynomials, like the q-Bernstein polynomials, are a derivative of the 
Bernstein polynomials. This new generalized α-Bernstein operators is defined.

Definition 2. Given a function f(x) on [0,1], for each positive integer n and any fixed 
real α, we define α- Bernstein operator for f(x):
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where fi = f(i/n). For i = 0, 1, 2,…, n, the α-Bernstein polynomial p(α)
n,i(x) of degree n is defined 

by p(α)
1,i(x) = 1 – x, p(α)
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where n ≥ 2, x ∈ [0, 1] and the binomial coefficients (k
l ) are given:
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The class of α-Bernstein operators contains the classical Bernstein ones, for α = 1 
[20].

For each function f(x), there is a sequence of α-Bernstein operators. The α-Bernstein 
operator maps a function f defined on [0, 1] to the function Tn,α(f ) where Tn,α(f ) evaluated at x 
is denoted byTn,α(f , x).
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The authors gave some elementary properties and proved the uniform convergences 
of the sequence of the α-Bernstein operators to f ∈ C[0, 1].

Now we will construct the α-Bernstein operators in a different form. With the help 
of the approximation theorem mentioned earlier in the paper, we will obtain the upper bound 
required for the convergence of this operator.

Approximation using the distributions

Let Kn be the binomial trial with the same last two trials. In eq. (14), the last two trials 
are kept the same so that the middle expression is 0. Thus, the first term provides the expression 
snnnn and the last term provides the expression sn. Thus, the distribution is obtained as in eq. 
(15). In this case, equality in (13):

( ) ( ) ( ) ( ) ( ) ( )*
, 1n i n n np x P K i P S i P S iα α α= = = − = + = (15)

can be written. Now let’s calculate the expected value and
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In approximation theorem, if m = 0 is taken specially:
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is given. Let Ln = Tn,α. The aim here is to make the right-hand side of the approximation expres-
sion approach 0. Accordingly, if we choose δ such that ω(1/δ) approaches 0:
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is obtained.

Conclusion 

In this article, q-Bernstein polynomials based on q integers are introduced. These 
polynomials are constructed in a novel form, allowing for a fresh perspective on their appli-
cation. By utilizing an approximation theorem, we derive an upper bound for the convergence 
of these operators. This result highlights the versatility of operators with kernel probability 
functions in approximation theory. Specifically, it demonstrates that any operator with a prob-
abilistic kernel component can be adapted and utilized in various forms to achieve approxi-
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mation results. This broadens the scope of approximation theory, suggesting that a wide range 
of operators can be modified to suit different analytical needs and can still provide effective 
approximations. The findings underscore the potential for innovative applications and further 
exploration within the field, paving the way for new methods and techniques in the study of 
polynomial approximations.

References
[1]	 Cetin E., Applications of Bernstein polynomials, M. Sc. thesis, Uludag University, Bursa, Turkey, 2011
[2]	 Kılın, B. K., Bernstein-Chlodowsky Type Polynomials and Some Applications, M. Sc. thesis, Gaziantep 

University, Gaziantep, Turkey, 2019
[3]	 Liu, Y. J., et al., Approximation Properties of the Blending-Type Bernstein-Durrmeyer Operators, Axi-

oms, 12 (2022), 1, 5
[4]	 Ayman-Mursaleen, M., et al., Approximation by the Modified λ-Bernstein-Polynomial in Terms of Basis 

Function, AIMS Math., 9 (2024), 2, pp. 4409-4426
[5]	 Yadav, R., et al., Approximation of the Koopman Operator Via Bernstein Polynomials, 2024, arXiv pre-

print arXiv, 2403, 02438
[6]	 Aslan, R., et al., Some Approximation Results on a Class of New Type λ-Bernstein Polynomials, J. Math. 

Inequal., 16 (2022), 2, pp. 445-462
[7]	 Feller, W., An Introduction Probability Theory and Its Applications, Wiley, New York, USA, 1968, Vol. 1
[8]	 Charalambides, C. A., The q-Bernstein Basis as a q-Binomial Distribution, J. Stat. Plann. Inference, 140 

(2010), 8, pp. 2184-2190
[9]	 II’inskii, A., et al., Convergence of Generalized Bernstein Polynomials Based on the q-Integers, Proceed-

ings, Constructive Theory of Functions, Varna, Bulgaria, 2003, pp. 309-313
[10]	 Bernstein, S., Demonstration du Theoreme de Weierstrass Fondee Sur le Calcul des Probabilities, Com-

munications of the Kharkov Mathematical Society, 13 (1912), 1-2, pp. 1-3
[11]	 Lupas, A., A q-Analogue of the Bernstein Operator, Seminar on Numerical and Statistical Calculus, 5 

(1987), 4, pp. 85-92.
[12]	 Acu, M. A., Stancu-Schurer-Kantorovich Operators Based on q-Integers, Applied Mathematics and Com-

putation, 259 (2015), May, pp. 896-907
[13]	 Cardenas-Morales, D., et al., Bernstein-Type Operators which Preserve Polynomials, Computers and 

Mathematics with Applications, 62 (2011), 1, pp. 158-163
[14]	 Ostrovska, S., On the Lupas q-Analogue of the Bernstein Operator, The Rocky Mountain J. Math., 36 

(2006), 5, pp. 1615-1629
[15]	 Patterson, R. F., et al., Korovkin and Weierstrass Approximation Via Lacunary Statistical Sequences, J. 

Math. Stat., 1 (2005), 2, pp. 165-167
[16]	 Korovkin, P. P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, India, 1960
[17]	 Kim, T., A note on q-Bernstein Polynomials, Russ. J. Math. Phys., 18 (2011), 1, pp. 73-82 
[18]	 Rıvlin, J. P., An Introduction the Approximation of Functions, Bronx, New York, USA, 1978
[19]	 Gurcan, M., et al., Generalization of Korovkin Type Approximation by Appropriate Random Variables 

and Moments and an Application in Medicine, Pak. J. Statist., 27 (2011), 3, pp. 283-297
[20]	 Chen, X., et al., Approximation of Functions by a New Family of Generalized Bernstein Operators, J. 

Math. Anal. Appl., 450 (2017), 1, pp. 244-261
[21]	 Phillips, G. M., On Generalized Bernstein Polynomials, App. Math. & Info. Science, 18 (1996), 1, pp. 

263-269
[22]	 Dalmanoglu, O., Approximation by Kantorovich Type q-Bernstein Operators, Proceedings, 12th WSEAS 

International Conference on Applied Mathematics, Cairo, Egypt, 2007, pp. 113-117
[23]	 Gupta, V., et al., The Rate of Convergence of q‐Durrmeyer Operators for 0 < q < 1, Math. Methods Appl. 

Sci., 31 (2008), 16, pp. 1946-1955

Paper submitted: July 2, 2024
Paper revised: October 14, 2024
Paper accepted: November 1, 2024

2024 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.


