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This study explores the application of machine learning techniques to forecast 
atmospheric pollutant concentrations, focusing on NOx, NO2, and NO over the 
period from January 1, 2017, to December 1, 2017. Accurate prediction of air 
pollutant levels is crucial for effective environmental monitoring and public health 
protection. The research employs the Gaussian mixture model and decision tree 
model to analyze and predict pollutant data. The methodology encompasses rig-
orous data preprocessing steps, including cleaning and normalization, followed 
by model training and validation using cross-validation techniques to enhance 
robustness. Model performance is assessed through multiple metrics, including 
entropy, log-likelihood, normalized entropy criterion, integrated completed like-
lihood, akaike information criterion, and Bayesian information criterion. Results 
demonstrate that the Gaussian mixture model outperforms other approaches in 
predicting air pollutant levels, offering improved accuracy and reliability for en-
vironmental forecasting.
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Introduction

Air pollution, particularly from NOx, NO2, and NO, poses a significant threat to both 
environmental sustainability and public health. These pollutants contribute to respiratory and 
cardiovascular diseases and worsen climate-related challenges. Accurate predictions of their 
levels are essential for effective mitigation strategies, informed policy-making, and public 
health protection.

Recently, machine learning (ML) techniques have proven effective in analyzing com-
plex environmental data and enhancing air quality forecasts. This study utilizes Gaussian mix-
ture models (GMM) and decision tree models (DTM) to address the variability and uncertainty 
in air pollution data. These models are evaluated through various performance metrics, includ-
ing entropy, log-likelihood, normalized entropy criterion (NEC), integrated completed like-
lihood (ICL), Akaike information criterion (AIC), and Bayesian information criterion (BIC), 
ensuring a comprehensive assessment of model reliability and accuracy.

The goal of this research is to improve the accuracy and dependability of air quality 
predictions, thereby supporting more effective environmental monitoring, timely interventions, 
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and greater public awareness of pollution risks. The findings also highlight the value of com-
bining advanced ML models with robust evaluation frameworks to address air quality forecast-
ing challenges.

Literature survey

Accurately predicting air quality and pollutant levels is crucial for mitigating envi-
ronmental risks and protecting public health. As concerns over air pollution grow, many studies 
have adopted ML techniques to model the air quality index (AQI) and forecast pollutant con-
centrations, offering promising solutions to handle the complexities of environmental data. This 
section reviews the key ML approaches used in air quality prediction.

The study [1] explored various methods for AQI modeling and pollution forecasting, 
comparing support vector machines (SVM), long short-term memory (LSTM), and seasonal au-
toregressive integrated moving average (SARIMA). The SVM with radial basis function (RBF) 
kernel outperformed the others, and outliers were addressed using the Z-Score method [2]. In 
another study, air pollution data from Delhi, India (2009-2017), revealed a significant rise in pol-
lutants like PM10, NO2, and PM2.5 between 2016 and 2017, indicating worsening pollution [3, 
4]. Regression-based ML models were used to predict AQI, evaluated with MAE, mean absolute 
percentage error (MAPE), correlation coefficient (R2), and root mean square error (RMSE). A 
study in Stuttgart, Germany, used ML models to estimate pollutant levels at Marienplatz and Am 
Neckartor, aiming to replace traditional monitoring stations with virtual ones [5]. The accuracy of 
predictions was improved by incorporating data from nearby stations. In Jakarta, Indonesia, the 
CatBoost algorithm was applied to predict urban air quality from 2010 to 2021, achieving 0.9781 
accuracy, demonstrating its ability to handle environmental data and missing values [6, 7].

Rapid urbanization contributes to air pollution, with vehicular congestion and indus-
trial activities worsening air quality [8]. A study in Makkah used data from 2016 to 2018 to de-
velop predictive algorithms, with the ensemble boosting tree model achieving 97.4% accuracy, 
surpassing fuzzy decision tree and ensemble bagging tree models [9, 10]. The environmental 
impact of pollutants like SO2 and NOx is well-documented, contributing to acid rain and smog 
[11]. A study focused on coking facilities in China proposed a quantitative approach to forecast 
SO2 emissions and set regulations for industrial pollutants [12].

Support vector regression and random forest regression have demonstrated superior 
performance in predicting pollutant concentrations [13]. The ImDFR model was also successful 
in predicting dioxin emissions from municipal waste incineration, optimizing the flue gas puri-
fication process [14]. Efforts to reduce maritime air pollution focus on improving ship design, 
operational efficiency, and adopting cleaner fuels like LNG and biofuels. Stronger regulation 
by the international maritime organization is essential for addressing pollution in under-studied 
regions [15]. Finally, a study in Chennai used a multivariate time series model and a real-time 
autoregressive approach to predict PM2.5 levels, with a weighted ensemble technique outper-
forming classical models like ARIMA and VAR [16].

In conclusion, ML techniques are increasingly valuable for predicting and managing 
air quality. Models like SVM, CatBoost, and ensemble learning approaches show promise across 
various urban and industrial contexts. Local data, such as nearby monitoring stations or histor-
ical trends, can improve prediction accuracy. However, challenges remain, including managing 
missing data and optimizing algorithms for complex environments. This study builds on this 
progress by using GMM and DTM to refine pollutant level predictions, with the aim of advanc-
ing forecasting methods.
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The used machine learning models

This section presents the two ML models employed in this study to predict the levels 
of air pollutants: GMM and DTM. Both models have been selected due to their ability to handle 
complex environmental data and their proven effectiveness in predictive tasks.

Gaussian mixture model 

The GMM is a powerful statistical tool for modeling complex data distributions by 
combining multiple Gaussian distributions, each with its own mean, variance, and weight. This 
flexibility allows GMM to capture multi-modal patterns, making it ideal for clustering data and 
forecasting distributions. In environmental science, pollutants like NOx, NO2, and NO often 
exhibit complex, multi-modal behavior, especially with seasonal variations or pollution peaks 
from specific sources. The GMM can effectively model these patterns by accounting for dis-
tinct clusters in the data, such as traffic emissions, industrial sources, or seasonal effects [17].

The probability density function of a GMM is a weighted sum of several Gaussian dis-
tributions. Each component represents a different cluster within the data, with specific means, 
variances, and weights reflecting the central tendency, dispersion, and relative importance of 
each cluster. This is particularly useful when air pollution data shows distinct groups corre-
sponding to various pollution sources.

The expectation-maximization (EM) algorithm is an iterative method for estimating 
model parameters when data contains missing or latent variables. This is particularly relevant 
for environmental data, where gaps may occur due to sensor malfunctions or unobservable fac-
tors affecting pollutant concentrations [18]. The EM algorithm is composed of two main steps:
 – Expectation step (E-step): This step estimates missing or latent data based on available 

observations and current model estimates. In air pollution forecasting, this might involve 
predicting the likelihood that an observation belongs to a specific pollutant cluster, based on 
existing data and model assumptions [19].

 – Maximization step (M-step): After filling in the missing data, the model parameters (such as 
means, variances, and weights of the Gaussian distributions) are updated to maximize the 
likelihood of the observed data, improving the model’s fit. This step refines the estimates of 
pollutant concentration patterns over time, enhancing the accuracy of the model’s predic-
tions [20].

These steps are repeated iteratively until the algorithm converges to optimal parame-
ter values, refining the model’s predictions and making it well-suited for complex, incomplete 
environmental datasets.

By combining GMM with the EM algorithm, this study improves the accuracy and re-
liability of air pollution forecasts, capturing the underlying distribution of pollutant concentra-
tions. These methods enhance environmental monitoring, decision-making, and public health 
strategies.

Decision tree 

Decision trees (DT) are a widely-used ML technique that excels in both classification 
and regression tasks. They are particularly valuable for analyzing complex datasets where the 
goal is to partition the data into distinct categories or predict numerical outcomes based on 
input features. The main strength of DT lies in their ability to model relationships between 
variables in a hierarchical structure, making them intuitive and easy to interpret. The process of 
building a decision tree involves recursively partitioning the dataset into subsets based on the 
values of different features, thereby creating a tree-like model [21, 22]. Each internal node of 
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the tree represents a decision based on a feature, while the leaf nodes represent the outcomes 
or predictions. These trees are effective in capturing both linear and non-linear relationships 
within the data.

Structure of a decision tree

 – Root node: The root node is the starting point of the decision tree. It contains the entire data-
set and represents the first feature split that divides the data into subsets. This initial division 
is based on a feature that best separates the data, according to some criterion, such as infor-
mation gain or Gini impurity [23]. The root node is critical because it lays the foundation 
for the entire structure of the tree.

 – Decision nodes: After the root node, each subsequent node is called a decision node. These 
nodes represent a decision based on one of the input features. At each decision node, the 
dataset is split into subsets according to the feature values, aiming to maximize the distinc-
tion between the resulting groups. The feature chosen for each split is selected in such a way 
that the resulting subsets are as pure as possible, meaning they consist mostly of data points 
that belong to the same class or have similar outcomes in the case of regression [24].

 – Leaf nodes: The leaf nodes are the terminal points of the decision tree. These nodes do 
not lead to further splits but instead represent the final predicted outcome. In classification 
tasks, the leaf node typically contains the most frequent class label, while in regression, it 
contains the predicted value for the outcome. The accuracy and effectiveness of a decision 
tree depend largely on how well the leaf nodes reflect the true distribution of the data in their 
respective partitions [25].

 – Internal nodes: Internal nodes are any nodes in the tree that perform a split based on feature 
values. These nodes are neither the root nor the leaf nodes but play a vital role in the tree’s 
decision-making process. Each internal node divides the data into smaller subsets, further 
refining the predictions made by the tree. The deeper the internal nodes are in the tree, the 
more specific the predictions they make are, but this can also lead to overfitting if the tree 
becomes too complex. Effective pruning techniques are often used to simplify the tree and 
enhance its generalization capability [26].

Model evaluation and validation

Both models, GMM and DTM, are evaluated and validated using cross-validation 
techniques to assess their performance and ensure the robustness of the predictions. The models 
are trained on a portion of the data and tested on another portion to evaluate their accuracy, gen-
eralization ability, and resilience to overfitting. Several evaluation metrics are used, including 
MAE, RMSE, and R², to measure the models’ predictive accuracy. In addition, the performance 
of the models is compared using various information criteria, such as the AIC and the BIC, 
which provide insights into the models’ complexity and goodness-of-fit.

In the next section, we present the numerical results and discussion of the air pollutant 
levels (NOx, NO2, NO) based on the ML models employed in this study.

Numerical results 

The time series data for NOx, NO2, and NO, which significantly impact air pollution, 
covers the period from January 1, 2017, to December 31, 2017, fig. 1. The data is sourced 
from the national center of meteorology, Kingdom of Saudi Arabia website. Figure 1 illus-
trates the fluctuations in air pollution levels during this period, highlighting the marked changes 
and trends, particularly during the months of November and December, which experience the 
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highest levels of pollution. These months are notably affected by seasonal weather patterns. 
For instance, during temperature inversions in the winter, smog can become trapped near the 
ground, leading to elevated pollution levels. Additionally, the speed and direction of the wind 
during these months can hinder the dispersion of pollutants, exacerbating the accumulation of 
harmful emissions.

Figure 1. Pollution level data for the city of Jeddah

Table 1 presents the minimum and maximum values, along with the mean and stan-
dard deviation, for the air pollutants NOx, NO2, and NO. In metropolitan areas, the average 
annual concentrations of NO2 typically range between 20 µg/m³ and 50 µg/m³. Similarly, NO 
concentrations in urban environments generally fluctuate between 10 ppb and 50 ppb, with 
variations depending on traffic density and industrial activities. The concentration of NOx in 
urban regions can range from 50 ppb to 100 ppb or higher, influenced by various pollution 
sources, including vehicle emissions and industrial processes.

Table 1. Descriptive statistics for air pollutant levels

Variable Observations Minimum Maximum Mean Standard 
deviation

NOx 312 7.000 253.000 37.180 25.231
NO2 312 4.200 145.300 26.701 12.950
NO 312 0.000 144.000 11.376 14.717

Decision tree models results

The DT are flexible and intuitive tools for making predictions. Starting at the root 
node, decisions are made at each subsequent node based on feature values, allowing for an easy 
path to a forecast.

When building a ML model, it is crucial to split the data into training and test sets. 
This ensures that the model is evaluated on data it has not encountered during training, which 
helps assess its ability to generalize to new, unseen data. This approach prevents the model from 
merely memorizing the training set and ensures that it can handle real-world data effectively.

As shown in fig. 2, the distribution of the training and test datasets is: for NO2, 171 
samples (54.81%) were used for the training set, and 141 samples (45.19%) were used for the test 
set, totaling 312 samples; for NO, 159 samples (50.96%) were used for training, and 153 samples 
(49.03%) for testing, with 312 samples in total; for NOx, 145 samples (46.37%) were allocated to 
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Figure 2. Training and testing sample sets for air pollutant levels using 
the DT diagram: (a), (b) correspond to the (training, testing) sets for 
NO2, (c), (d) correspond to the (training, testing) sets for NO, and (e), (f) 
correspond to the (training, testing) sets for NOx 
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the training set, and 167 samples (53.53%) to the test set, out of 312 samples. These panels also 
display the mean, standard deviation, and predicted values at nodes zero, one, and two.

Gaussian mixture model results

The GMM consists of multiple Gaussian distributions, each characterized by its own 
mean and variance. It is used to estimate the probability density of a set of data points and to 
cluster them into groups that are likely to have originated from different Gaussian distributions. 
The model assigns each data point to the distribution it is most likely to belong to. To fit a GMM 
to the data, the EM algorithm is employed. This iterative method identifies the parameters that 
maximize the likelihood of the data under the model.

The data presented in tab. 2 shows the proportions, mean, and variability for each 
class of the pollutant (NO).

Table 2. The proportions, the mean, and the variance by class (NO)
Class 1 2 3 4 5

Proportions 0.021 0.377 0.148 0.374 0.080
Mean 79.510 7.977 16.804 3.649 35.667

Variance 79.510 7.977 16.804 3.649 35.667

Figure 3 illustrates the most probable values for each class based on the NO pollutant 
data. It provides a visual comparison between the observed data and the model's predictions, 
allowing for an assessment of the models' accuracy and reliability in capturing the patterns and 
fluctuations of pollutant levels. The cumulative distribution functions (CDF) for NO are also 
presented, highlighting the probability distribution and variability over time, and demonstrating 
a strong alignment between the predicted values and the empirical data.

Figure 3. The MAP classification, fitted model, and CDF of NO
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The data shown in tab. 3 presents the proportions, mean, and variation for each class 
of the NOx pollutant.

Figure 4 presents the most probable values associated with each class based on the 
NOx pollutant data. The second panel shows the alignment of the observed data with the model 
predictions for NOx, allowing for a clear visual comparison between the actual and predicted 
values. Additionally, the third panel displays the CDF for NOx, which depict the probability 
distribution and variability over time. These CDF highlight the strong agreement between the 
predicted and empirical data, enabling an evaluation of the models' accuracy and reliability in 
capturing the patterns and fluctuations in pollutant levels.

Table 3. The Proportions, the mean, and the variance by class (NOx)
Class 1 2 3 4 5

Proportions 0.414 0.408 0.112 0.043 0.024
Mean 23.651 34.894 57.418 78.225 144.252

Variance 49.387 68.585 76.981 13.578 4822.066

Figure 4. The MAP classification, fitted model, and CDF for NOx

The data shown in tab. 4 presents the proportions, mean, and variation for each class 
of the NO2 pollutant.

Table 4. The Proportions, the mean, and the variance by class (NO2)

Class 1 2 3 4 5

Proportions 0.179 0.405 0.364 0.035 0.017
Mean 18.655 23.707 28.619 52.153 88.370

Variance 13.739 44.750 60.292 22.849 1159.919

The data presented in tab. 4 provides the PMV for each class of the of pollutant (NO2).
Based on the data for the NO2 pollutant, the first panel of fig. 5 shows the most prob-

able values associated with each class. The second panel displays the fitted model, aligning 
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the data with the model's predictions for NO2, allowing for a visual comparison between the 
observed data and the model's forecasts. This comparison provides insight into the accuracy and 
reliability of the models in capturing the patterns and fluctuations in pollutant levels. The third 
panel presents the CDF for NO2, which illustrate the probability distribution and variability over 
time, while also demonstrating a strong correlation between the predicted and empirical data.

Figure 5. The MAP Classification, fitted model, and CDF for NO2

Air pollution levels from January 1 to December 1, 2017, reveal trends, with the worst 
months being November and December, likely influenced by weather changes. For instance, 
smog can accumulate during winter temperature inversions, and low wind speeds can hinder 
pollution dispersion, fig. 1. Table 1 shows the range, mean, and standard deviation for the pol-
lutants NOx, NO2, and NO, while tabs. 2-4 provide percentages, means, and variations for each 
pollutant category. Figures 3, 4, and 5 visually present fitted models and CDF for NOx, NO2, 
and NO, highlighting the maximum a posteriori (MAP) classification for each class. These 
CDF help understand the probability distribution of air pollution over time, showing a strong 
match between the predicted and observed data.

Table 5 outlines the selection criteria for evaluating the models, using BIC, AIC, ICL, 
log-likelihood, NEC, and entropy. Models with lower BIC, AIC, and ICL values indicate a 
better fit, while lower entropy and NEC values reflect more reliable predictions. The NOx show 
the best model fit, having the lowest BIC, AIC, and ICL values. According to the ICL criteria, 
GMM models outperform DTM, with results of –117661634.4 for NO, –117661634.4 for NO2, 
and –142259279.6 for NOx.

Table 5. The BIC, AIC, ICL, Log-likelihood, NEC, and Entropy criteria
Entropy NEC ICL Log-likelihood AIC BIC

NOx 7074687.67 1.079 –125522893.75 –55686644.33 –111373316.66 –111373518.40

NO2 11659304.65 2.582 –120907361.72 –48794261.34 –97588550.67 –97588752.42
NO 6701482.57 0.683 –103819089.16 –45207947.13 –90415922.27 –90416124.01
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Conclusion

In recent years, air pollution has become a critical global issue, garnering increasing 
attention from policymakers, environmentalists, and various stakeholders. In response to this 
growing concern, this study has focused on leveraging ML techniques to predict air pollution 
levels, aiming to enhance our understanding and management of this environmental challenge. 
The findings of this research underscore the complex and dynamic nature of air pollution, while 
also demonstrating the effectiveness of advanced ML models in accurately forecasting pollut-
ant concentrations. Specifically, the results reveal that the GMM outperforms the DTM in cap-
turing the underlying patterns of air pollution data. The lower ICL values observed in the GMM 
models indicate a better fit to the data, showcasing their superior efficiency compared to DTM. 
In particular, GMM models have provided more consistent results with reduced uncertainty, 
establishing them as a reliable tool for air quality forecasting. As air pollution continues to pose 
significant environmental and public health risks, the application of these predictive models is 
crucial for informed decision-making and the development of effective pollution control strat-
egies, ultimately contributing to a healthier and more sustainable future.
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