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This paper presents new definitions for Bloch spaces, hyperbolic derivatives, and
general hyperbolic Besov spaces. Furthermore, we present a fresh demonstration
of the hyperbolic function through the application of Holder inequality. Through
the application of Holder inequality. We also provide attributes for functions within
the declared classes in the unit disc. Furthermore, a collection of weighted tent
functions is studied, and features of identity operators are investigated for the new
tent function spaces.
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Introduction

Let D = {z €C:|z| < 1}be the unit disc in the complex plane C, 6D it's boundary. Let
H(D) to denote the space of all hiperbolic function (HF) in D and let B, be a subset of H(D)
consisting of these /'€ H(ID) for which |[f*(z)| < 1 for all z € . Also, d4(z) be the hyperbolic
area measure on ) such that A(DD) = 1. The usual <— Bolch spaces B is defined as the set of
those f'€ H(ID) for which:

B, = {f : f hyperbolic in D and sup,_, (1—|z|2)f* (z)< oo}, 0 <oc< o0 (1)

and

hm‘f ‘(1—|z|2)OC =

z‘~>l

For more information on Bloch-type classes in C, we might turn to [1-6].
The well-known hyperbolic derivatives (HD) is defined:

f'(z
/(2)= el
=)
of /'€ H(DD) and the hyperbolic distance is given:
1+(f(z
p(f(2).0)=71o { —If 5 U @)
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Let 2 <p <o, fbe HF in H(DD) we define
p_
el

f(z :
(2) RPE

So, we acquired that f5(z) = f"(2).
For more details on Bloch spaces of HF, see references [6, 7]. A class of HF are called
Q’, — spaces given by [8], where 0 <p < oo

Q; ={f: f hyperbolicin ) and supaeDJ- f* (z)‘2 g’ (z,a)daz <o

Analytic O, — spaces are introduced by Aulaskari and Lappan [12].

Preliminary results
Definition

The (p, <) — Bolch spaces B}, and B}, o are defined as the set of those /'€ H(D):

f(Z)|(§7lj f* (z)‘(l—|z|2 )OC < 3)

I, =Zsvp.co

and

lim| f(z)|(§*lj

‘z‘%l

£ (@|(1-[F) =0

where 2 <p <4 and 0 < o < oo,
We define the HD by f € (D):

abelFre
P (1—|f(z)|p)

when p = 2 we obtain usual HD as defined 4 function, f € B(D) is said to belong to the gener-
alized hyperbolic (p, <) — Bolch class B", , if:

£ E-F)

|7 ||B;W = Supzemw

(4)

<o )

The little generalized (p, ¢, ) — hyperbolic Bloch type classes B", ., consist of all
f€ B’ ,,. such as:

RAGIEER)
11m _—_—
1w (1-]2))

Let the Green's function of ID be defined:

-0 (6)

g(z,a)=log;

2, (2))

where
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a-z
P \Z2)=7T7"
a( ) 1—az

Is the Mobus transformation related to the point a € ). For 2 <p <4 and 0 < « < oo,
the hyperbolic class:

*

Sro @ (1=

q
- (7
U
Class O, , consist of those function /' € B(D) this is defined:
* 2
"f”g(*pa) =Supae]D)J.(f (Z)) g (Z,a)dA(Z)<OO (8)

D
Moreover, we say that '€ QY , belong to the classes Q. if:

lim (f* (z))2 g% (z,a)dd(z)=0

|a]—>1
when p =2 we obtain the hyperbolic Q classes as studied in [1, 9, 10].
Definition

From [7, 11], Let w:(0, 1] — (0, ) be a given reasonable function. Suppose that
0<g<2andg<p <« 2aHF fon D is said to belong to the B,,,, spaces if:

* (1— Pu (Z)|2)S
"f”q,,,, = supaem)i[ Iy (Z)‘q W

We need the relation eq. (10) in the proofs:

()= (it o) _|Z| ) (10)

(1-le
|1 azf*

1-|z|<[1-az| <1+|z| and also 1-|a|<|1-dz|<1+|q|

dA(z)<oo ©)

where

Remark

The Schwarz-pick lemma implies that B, = B(D) for all <> 1 with || /|| -, <1 and
therefore, the generalized hyperbolic (p, ) — class are of interest only, when 0 < « <1
Also, we define the classes of general hyperbolic Besov-space B),,,, and f € B(D) for

which:
* (1_|Z|2)(w) (1_ 0 (z)|2)p
M., =swpeen 1 N 50

dA(z) <o (11)

when2 <p<4andp <g<o.
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Preposition
Preposition
Let fbe HF belong to By, ., then we have:

* (1_|Z|2)(f/*p) (1_ 0 (z)|2)p
507

da(z)<2" Vg

().
»(2) -

Proof [12]:

G (el ()
- q 2\7 (Z)S P, (Z) D 2\? dA(Z)
e (=) (1) wl | (1-IF)
e (1) (-l )
(et

= (l - |a|2 )p f(;w) (z)

q 1
dA =
£|1_az|21’ )

2n
S ()] (1=al)” (1+]a])” J‘%dl“rdrde
0 |1 —az|

I ! dr < ! , 2<p<o

~ 12p ~A |
BD|1—az |1—az

.'.1+|a|<2

fZ%w>(z)

[<2P g

~1<2P

[ 2n= 2P0

Fipn (=)

S (=)

Corollary

From proposition 1.4, we get for 0 < p <o and 0 < g < co that:
B*p,w = B?p,q, )+
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Theorern
Let 0 <g <o and 2 <p,;<4 — p we have that:

Upl Q(*Pl’w) < ﬂ(p,q) B(*p,q,w)

Proof: Let f€ O, ,, for fixed 2 < p;< 4 — g and 0 < g < 2. Then by using Holder in
eq. (1) we acquire that:

"l

q/2

. a 2\(a-p) 1 71%a (=) } Spo (=) »
el (o EE

0. (=) )[pqulJ

01

2 P 1@ 2a=r) 2p—apy (2%4]
= f*(Z)||B(*p,w)J[(l_¢” (z)|2) dA(z)‘ X{J‘(I—HZ)[ 2 J(l—‘/’a (z)|)( 2 JdA(z); _
2g (13)
@ T
= f*(z)";mj (1 ||1| l(zl| ||) aA(z)

Remark

Some authors discussed the investigation of particular differential equations that
evolve into specific analytic function spaces, see [10, 12]. We can formulate the following
question in terms of the defined generic hyperbolic classes: How can we use certain hyperbolic
types to solve certain differential equations?

Conclusion

We use a variety of tools to investigate this topic. Several scholars have investigated
HF, see [13-16], among others. This research focuses on certain assumptions about specific
classes of weighted HF spaces when they are applied to a general HD. In order to achieve this
goal, we present intriguing definitions and introduce a novel class of uniquely private gener-
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al HF. These functions generate hyperbolic-type functions that release the general derivative;
hence, decreasing scales and providing obvious benefits. We also suggested a chordal metric.
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