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In this study, digital information is regarded as fundamental to scientific growth 
and human knowledge. One of the challenges that scientists face is the enormous 
amount of digital information that exists nowadays. The rough is a significant to-
pological strategy for reducing knowledge and arriving at decision rules. Fur-
thermore, the research proposed a new methodology to reduce digital informa-
tion uncertainty. This was clarified by the application provided in this study. In 
upcoming years, according to certain topological research, we see that it benefits 
all branches of science. For example, in electricity networks, pharmaceutical fac-
tories, patient treatment, and so on.
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decision making, neighborhoods

Introduction 

Information on our environment is often incomplete, inaccurate, or unclear. Dissect-
ing data is essential to solving problems with people. Information about the surrounding world 
is sometimes imperfect, partial, or ambiguous [1-4]. The design and operation of intelligent 
systems are greatly impacted by the granulation of information, which is essential to human 
problem solving [5-7]. We will determine whether there is incompleteness or uncertainty, and 
in certain cases, new mathematical methods were used [1-4]. Pawlak proposed the concept of 
rough sets [8, 9]. One way to supporting the reasoning and analysis of information based on 
many levels of conceptualisation is the growing discipline of granular computing, a term coined 
by Lin et al. [10] and having its roots in Lin’s study on neighbourhoods. The information may 
be certain or uncertain. It is a formal theory evolved from basic study into the logical features of 
information systems. It is obvious that there is another set, fuzzy theory, in which this theory and 
rough set theory are complimentary generalisations of classical sets. The rough set approach has 
many applications in process control, economics, medical diagnosis, biology, and so on. Rough 
set theory can be called a topological based method because it mainly depends on the partition 
formed by the equivalence relation and the topology generated by this partition. The success of 
rough sets in data analysis shifted the focus to topological methods for solving uncertainty prob-
lems. Pawlak’s [11], the foundation of rough set theory is rooted in the concept of forest chaos, 
which results from insufficient and incomplete information systems. A filter-based approach can 
be used to extract knowledge efficiently from a domain while preserving information quality and 

* Authorʼs e-mail: elsafty010@yahoo.co.uk

mailto:elsafty010@yahoo.co.uk


4918	
El Safty, M. A.: Rough Topological Structure for Information-Based ... 

THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 4917-4926

minimizing the need for knowledge, which is made possible by rough set attribute reduction. The 
premise is that the set of reduced attributes is defined based on the standard of upholding the 
secure area, as defined by the complete range of characteristics.

This study presents a novel type of reduction-based rough set and topological space 
that generalises both lower and upper approximation operators as well as topological tools.

Preliminaries 

Rough sets and approximations 

Consider an equivalency relation R on a finite set Z. With Y1, Y2,…,Ym as equivalency 
classes produced by R, this relation R will provide a partition Z/R= {Y1, Y2, …, Ym} on Z. Tese 
classes of equivalence are often known as the elementary sets of R. The following two sets 
which are referred to as the lower and upper approximations of X, respectively, are used to 
characterize any X ⊂ Z, the elementary sets of R:

R*(X) = ∪ {Yi ∈ Z/R: {Yi }⊆ X}, R*(X) = ∪ {Yi ∈ Z/R: {Yi } ∩ X ≠ Ø}

Reduction and core

All concepts contained within the knowledge base [12] can only be articulated in 
terms of fundamental categories. However, each fundamental category is composed of a few 
elementary categories. In the context of qualities and knowledge, two key ideas of the rough 
sets theory are core and reduce [11]. The element shared by all reductions is called the core. 
The term core refers to the collection of all necessary qualities. New reduction may be support-
ed by logical principles developed from experimental data. The dilemma of whether we may 
delete certain data while maintaining a data table’s fundamental characteristics that is, whether 
the database contains any superfluous data occurs frequently. Indeterminacy is introduced by 
the suggested approach by the controlled removal of conditional qualities. The elements in the 
discernibility function are used to choose which attributes should be eliminated, eliminating the 
data required in the original information system to distinguish between classes [13-16].

Definition 1. [11] Given an information function f: Z → J where C is the collection of 
attributes, and is the domain J of the specific attributes where the values are real numbers, we 
can define (Z, C, J, f) as follows. For every attribute, the following relation Rci is defined: if γ is 
established by a subject matter expert:

xRciy iff: |ci(x) – ci(y)| ≤ γ 
When knowledge comes from the medical profession, for instance, the expert is some-

one who is engaged in medicine and solving problems. Because each ci ∈ C,O is a finite set, we 
may therefore, obtain a classification O/Rci 

:

{ : }, { : ( ) ( )ci ci i ix R x O x R y c x c y γ∈ = − ≤

Definition 2. [11] Let R be an equivalence family and C ∈ R. If IND(R) = IND(R – {C}), 
we can coclude that C is not necessary in R. Since IND(R) ≠ IND(R – {C}), we can conclude 
that C is necessary for R (Core).

Definition 3. [12] A family of sets, F = {z1, z2, …, zn}, is defined i = 1, 2, 3, …, n. The 
set zi ⊆ Z. In F, we consider the set zi to be indispensable if (F – zi) = F, and otherwise dispens-
able otherwise. Families F are dependent on each other unless every member of the family is 
indispensable in F. If H = F and H is independent, the the family H ⊆ F is a reduct of F. To be 
considered the core of F, it is the family of all indispensable sets in F.
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Information data

Data

We present a novel reduction on information technology in this work, as well as how 
topology is applied in contemporary rough set theory employing data and information about a 
problem. We begin by converting the values of the decision attribute {d} and the characteristics 
{c1, c2, …, c7} into qualitative words in order to establish an acceptable information system for 
the application. The modelling of a protein’s unfolding energy, involving 19 coded amino acids 
(AA) [13], is the topic of discussion with this data. The AA are described in terms of seven at-
tributes: c1 = PIE, c2 = PIF, c3 = DGR of transfer from the protein interior to water, c4 = MR = 
molecular refractivity, c5 = SAC = surface area, c6 = LAM = the side chain polarity and c7 = Vol.  
= molecular volume compare this results with the new reduction. The application starts by trans-
lating the values of the attributes {c1, c2, …, c7} and the value of the decision attribute {d} into 
qualitative terms. We need to make a reduction of information system tables by using neighbor-
hood. The definitions of the next determine the new method. Let us illustrate a part of tab. 1.

Table 1. Decisions made with the information

Objects
Attributes Decision

c1 c2 c3 c4 c5 c6 c7 d

Z1 0.23 0.31 –0.55 254.2 2.126 –0.020 82.20 8.5

Z2 –0.48 –0.60 0.51 303.6 2.994 –1.24 112.3 8.2

Z3 –0.61 –0.77 1.20 287.9 2.994 –1.08 103.7 8.5

Z4 0.45 1.45 –1.4 282.9 2.933 –0.110 99.10 11.0

Z5 –0.11 –0.22 0.29 335.0 3.458 –1.19 127.5 6.3

Z6 –0.51 –0.64 0.76 311.6 3.243 –1.43 120.5 8.8

Z7 0.00 0.00 0.00 224.9 1.662 0.030 65.00 7.1

Z8 0.15 0.13 –0.25 337.2 3.856 –1.06 140.6 10.1

Z9 1.20 1.80 –2.1 322.6 3.350 0.040 131.7 16.8

Z10 1.28 1.70 –2.0 324.0 3.518 0.120 131.5 15.0

Z11 –0.77 –0.99 0.78 336.6 2.933 –2.26 144.3 7.9

Z12 0.90 1.23 –1.6 336.3 3.860 –0.330 132.3 13.3

Z13 1.56 1.79 –2.6 336.1 4.638 –0.050 155.8 11.2

Z14 0.38 0.490 –1.5 228.5 2.876 –0.310 106.7 8.2

Z15 0.00 –0.04 0.09 266.7 2.279 –0.400 88.50 7.4

Z16 0.17 0.26 –0.58 282.9 2.743 –0.530 105.3 8.8

Z17 1.85 2.25 –2.7 401.8 5.755 –0.310 185.9 9.9

Z18 0.89 0.96 –1.7 377.8 4.791 –0.840 162.7 8.8

Z19 0.71 1.22 –1.6 295.1 3.054 –0.130 115.6 12.0

Whereas the choice attribute is coded into three qualitative terms (low, medium, and 
high), the condition characteristics are coded into four terms (very low, low, high, and very 
high). Next, natural numbers are used to code each attribute’s qualitative words. The coded 
information system and ele- mentary set are given in tab. 2.
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Table 2. Elementary set induced by IND (C)

C 
   Z/C  

Attributes
c1 c2 c3 c4 c5 c6 c7

X1 = {Z1, Z7, Z15} 2 2 3 1 1 4 1
X2 = {Z2, Z3, Z6} 1 1 4 2 2 2 2
X3 = {Z9, Z10} 4 4 1 3 2 4 3

X4 = {Z4} 2 4 2 2 2 4 2
X5 = {Z5} 2 1 4 3 2 2 3
X6 = {Z8} 2 2 3 3 3 3 3
X7 = {Z11} 1 1 4 3 2 1 3
X8 = {Z12} 3 3 2 3 3 4 3
X9 = {Z13} 4 4 1 4 3 4 4
X10 = {Z14} 2 2 2 2 2 4 2
X11 = {Z16} 2 2 3 2 2 3 2
X12 = {Z17} 4 4 1 4 4 4 4
X13 = {Z18} 3 3 2 4 4 3 4
X14 = {Z19} 3 3 2 2 2 4 2

By leaving out the attribute c2 in tab. 3.

Table 3. Removing attribute c2 from tab. 2

C – {c2}
 Z/C – {c2}

Attributes
c1 c3 c4 c5 c6 c7

X1 = {Z1, Z7, Z15} 2 3 1 1 4 1
X2 = {Z2, Z3, Z6} 1 4 2 2 2 2

X3 = {Z9, Z10} 4 1 3 2 4 3
X4 = {Z4, Z14} 2 2 2 2 4 2

X5 = {Z5} 1 4 3 2 2 3
X6 = {Z8} 2 3 3 3 3 3
X7 = {Z11} 1 4 3 2 1 3
X8 = {Z12} 3 2 3 3 4 3
X9 = {Z13} 4 1 4 3 4 4
X10 = {Z16} 2 3 2 2 3 2
X11 = {Z17} 4 1 4 4 4 4
X12 = {Z18} 3 2 4 4 3 4
X13 = {Z19} 3 2 2 2 4 2

Similar results occur when we remove c2 and c5, respectively, yielding the objects 
X4 and X10 are equals and X9 and X12 are equals when remove c5. We observe that, in addition  
IND(C) ≠ IND(C – {c2}), IND(C) ≠ IND(C – {c5}). The c2 and c5 are hence essential. As an 
obtain tab. 4 by excluding c1.
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Table 4. Removing attribute c1 from tab. 2

C – {c1}
 Z/C – {c1}

Attributes
c2 c3 c4 c5 c6 c7

X1 = {Z1, Z7, Z15} 2 3 1 1 4 1
X2 = {Z2, Z3, Z6} 1 4 2 2 2 2

X3 = {Z9, Z10} 4 1 3 2 4 3
X4 = {Z4} 4 2 2 2 4 2
X5 = {Z5} 1 4 3 2 2 3
X6 = {Z8} 2 3 3 3 3 3
X7 = {Z11} 1 4 3 2 1 3
X8 = {Z12} 3 2 3 3 4 3
X9 = {Z13} 4 1 4 3 4 4
X10 = {Z14} 2 2 2 2 4 2
X11 = {Z16} 2 3 2 2 3 2
X12 = {Z17} 4 1 4 4 4 4
X13 = {Z18} 3 2 4 4 3 4
X14 = {Z19} 3 2 2 2 4 2

As similar, when removing c3, c4, c6, and c7, we get IND(C) = IND(C – {c1}),  
IND(C) = IND(C – {c3}), IND(C) = IND(C – {c4}), IND(C) = IND(C – {c6}), and  
IND(C) = IND(C – {c7}), Then c1, c3, c4, c6, and c7 are superfluous, tab. 5.

Table 5. Removing attributes
Eliminating features

Quantity of basic sets
None c1 c2 c3 c4 c5 c6 c7

14 14 13 14 14 13 14 14

As shown in tab. 6, the set of all partitions induced by IND(A′) was introduced.

Table 6. The set of all partitions induced by IND (C′)

C′
  Z/C′

Attributes
c2 c5

T1 = {Z1, Z7, Z15} 2 1
T2 = {Z2, Z3, Z5, Z6, Z11} 1 2

T3 = {Z4, Z9, Z10} 4 2
T4 = {Z14, Z16} 2 2

T5 = {Z8} 2 3
T6 = {Z12} 3 3
T7 = {Z13} 4 3
T8 = {Z17} 4 4
T9 = {Z18} 3 4
T10 = {Z19} 3 2
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Pawlak method and neighborhood method

Pawlak method

We illustrate the reduction of Pawlak in the decision of the following tab. 7, contains 
four attributes {c1, c2, c3, c5} and one decision {d} describes the belongingness of eight objects. 
In the next, we have to reduce superfluous values of condition in every decision rule. Also, we 
compute the core values of condition attribute by using Definition 2.

Table 7. Decision table of some objects

Objects Attributes
c1 c2 c3 c5

h1 2 2 3 1
h2 1 1 4 2
h3 1 1 4 2
h4 2 4 2 2
h5 2 1 4 2
h6 1 1 4 2
h7 2 2 3 1
h8 2 2 3 3

Consider the families of sets F1, …, F8, where 
F1 = {[1]c1, [1]c2, [1]c3, [1]c5} = {{h1, h4, h5, h7, h8}, {h1, h7, h8}, {h1, h7}}. 

The ∪F1 = {h1, h4, h5, h7, h8}, since c1(1) = 2, c2(1) = 2, c3(1) = 3, c5(1) = 1.
In order to find dispensable,

∪ (F1 – [1]c1) = {h1, h7, h8} ≠ ∪ F1, ∪ (F1 – [1]c2) = {h1, h4, h5, h7, h8} = 
= ∪ F1, ∪ (F1 – [1]c3) = {h1, h4, h5, h7, h8}= ∪ F1, ∪ (F1 – [1]c5) = 

= {h1, h4, h5, h7, h8} = ∪ F1.
 This means that the core value is c1(1) = 2, and also, we find that,

 F2 = {[2]a1, [2]a2, [2]a3, [2]a5} = {h2, h3, h6}, {h2, h3, h5, h6}, {h2, h3, h4, h5, h6}}, 
∪ F2 = {h2, h3, h4, h5, h6}, since c1(2) = 1, c2(2) = 1, c3(2) = 4, c5(2) = 2.

	 ∪ (F2 – [2]c1) = {h2, h3, h4, h5, h6}= ∪ F2, ∪ (F2 – [2]c2) = {h2, h3, h4, h5, h6} = ∪ F2,
∪ (F2 – [2]c3) = {h2, h3, h4, h5, h6}= ∪ F2, ∪ (F2 – [2]c5) = {h2, h3, h5, h6} = F2. 

This means that the core value is c4(2) = 2 and we find by similar F3, F4, …, F8. The final deci-
sion is given in tab. 8.

Table 8. Decision table by Pawlak definition

Objects
(Definitio 2) ≡∪ (Fi – ck) = ∪ Fi

c1 c2 c3 c5

h1 2 – – –
h2 – – – 2
h3 – – – 2
h4 2 – – 2
h5 2 – – –
h6 – – – 2
h7 2 – – –
h8 2 – – –
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Neighborhood method

We notice that, the coded method convert some attributes are the same, as c5, c7,  and 
some objectives are the same as objectives Z2, Z3, Z6, and also, objectives Z1, Z7, Z15 are the same 
as shown in tab. 2. So, we thought for the other methods to solve the problems.

Table 9. Decision table of some objects original data

Objects Attributes
c1 c2 c3 c5

h1 0.23 0.31 –0.55 2.126
h2 –0.48 –0.60 0.51 2.994
h3 –0.61 –0.77 1.20 2.994
h4 0.45 1.54 –1.40 2.933
h5 –0.11 –0.22 0.29 3.458
h6 –0.51 –0.64 0.76 3.243
h7 0.00 0.00 0.00 1.662
h8 0.15 0.13 –0.25 3.856

Look the attribute c1 in the tab, 9: we take the neighborhoods between them:
|xi – xj| ≤ 0.6, consider the families of sets F1, …, F8,

where F1 = {[1]c1, [1]c2, [1]a3, [1]c5} = {{h1, h4, h5, h7, h8},  
{h1, h5, h7, h8}, {h1, h7, h8}, {h1, h7}} ∪ F1 = {h1, h4, h5, h7, h8}, 

since c1(1) = 0.23, c2(1) = 0.31, c3(1) = –0.55, c5(1) =2.126.
In order to find dispensable

∪ (F1 – [1]c1) = {h1, h5, h7, h8} ≠ ∪ F1, ∪ (F1 – [1]c2) = {h1, h4, h5, h7, h8} = ∪ F1,  
(F1 – [1]c3) = {h1, h4, h5, h7, h8} = ∪ F1, ∪ (F1 – [1]c5) = {h1, h4, h5, h7, h8} = ∪ F1. 

This means that the core value is c1(1) = 0.23, and also, we find that, 
F2 = {[2]a1, [2]a2, [2]a3, [2]a5} = {{h2, h3, h5, h6, h7}, {h2, h5, h6, h7},  

{h2, h3, h4, h6}}, ∪ F2 ={h2, h3, h4, h5, h6, h7}, since a1(2) = –0.48, a2(2) = –0.6,  
a3(2) = 0.51, a5(2) = 2.994.  

∪ (F2 – [2]a1) = {h2, h3, h4, h5, h6, h7}= ∪ F2, 
∪ (F2 – [2]a2) = {h2, h3, h4, h5, h6, h7}= ∪ F2, 

∪ (F2 – [2]a3) = {h2, h3, h4, h5, h6, h7}= ∪ F2, ∪ (F2 – [2]a5) = {h2, h3, h5, h6, h7} ≠ ∪ F2. 
This means that the core values is a5(2) = 2.994. By similar, we can find F3, F4, …, F8. 

The final decision is given in tab. 10 by the neighborhood method.

Table 10. Decision table by neighborhood method

Objects (Definitio 2) ≡∪ (Fi – ck) = ∪ Fi

c1 c2 c3 c5

h1 0.23 – – –
h2 – – – 2.994
h3 – – – 2.994
h4 –0.45 – – 2.933
h5 – – – –
h6 –0.51 – – 3.243
h7 0 – – –
h8 0.15 – – –
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The final decision as showing in the tab. 11.

Table 11. Decision final table by neighborhood method

Objects 
(Definitio 2) ≡∪ (Fi – ck) = ∪ Fi

c1 c5

I. h1, h7, h8 2 –
II. h2, h3 – 2
III. h5 – –
IV. h4 2 2
V. h6 1 2

Let us assume that we intend to classify the following two sets of objects using the 
data of Pawlak method from tab. 12 and the data of neighborhood method from tab. 11,

Y1 = {x1, x2, x3, x5, x6, x7} and Y2 = {x4, x8}.

Table 12. Decision final table by Pawlak method

Objects 
(Definitio 3) ≡∪ (Fi – [ck]) = ∪ Fi

c1 c5

I. h1, h7, h5, h8 2 –
II. h2, h3, h6 – 2
III. h4 2 2

Lower and upper approximations of each class and the accuracy of their classifica-
tion are presented in tab. 13.

Table 13. Accuracy of Pawlak and Neighborhood methods

Class number Objects
Pawlak method Neighborhood method

Lower Upper Accuracy Lower Upper Accuracy

1 6 3 7 3 / 7 4 7 4 / 7
2 2 1 5 1 / 5 1 4 1 / 4

Comparing between tabs. 11 and 12, we find that the new work satisfy all aims from 
saving time and effort. The new method is best to deal with the fact information system. Table 
8, obvious that Neighborhood method perfect from Pawlak method.

Removed attribute c5: From using the data of Pawlak method from tab. 12 and the data 
of neighborhood method from tab. 11, Y1 = {x1, x2, x3, x5, x6, x7} and Y2 = {x4, x8}. We get the 
results shown in tab. 14.

Table 14. Removed attribute c5

Neighborhood method Pawlak method

Z/C – {c5} c1 Z/C – {c5} c1

X1 = {Z1, Z4, Z7, Z8} 2 X1 = {Z1, Z4, Z5, Z7, Z8} 2

 X2 = {Z2, Z3, Z5} – X2 = {Z2, Z3, Z6} –
X3 = {Z6} 1
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From Neighborhood method, we find that:
The lower approximation is L(Y1) = 4 ≠ φ, the upper approximation is U(Y1) = 8 = Z,  

then X is called externally undefinable in U. Accuracy of approximation µ(Y1) = L(Y1)/U(Y1) = 1/2.
From Pawlak method, we find that:
The lower approximation is L(Y1) = 3 ≠ φ the upper approximation is U(Y1) = 8 = Z, 

Then X is called externally undefinable in Z. Accuracy of approximation µ(Y1) = L(Y1)/U(Y1) = 3/8.
From the previous illustrate, we show that the new reduction is better than the method 

of Pawlak to find reduct.

Conclusions

 The task of utilizing all the information obtained through an experimental measure-
ment can be time-consuming. Eliminating extraneous attributes is crucial for saving time and 
effort. Topological methods (rough set) are significant and captivating when it comes to solving 
uncertain problems. According to the rough set methodology, the data pattern becomes more 
visible when the degree of precision is reduced. Knowledge is defined by the ability to catego-
rize, which is the central premise of the rough set philosophy. Classification or decision criteria 
based on a set of instances are the products of the rough set technique. This work illuminates the 
challenge of attribute reduction in new ways. It suggests that further research should be done on 
additional semantic information preserved by attribute reduction. Knowledge reduction is the 
removal of redundant partitions (equivalence relations). This approach allows us to remove all 
extraneous knowledge from the knowledge base while retaining only the most useful informa-
tion. The accuracy of the set was determined to be superior to the accuracy of Pawlak. 

We discover a difference between the science of medicine practitioner and doctor con-
sultative through experience, so this paper may help practitioners skills to handle their patients, 
as well as determine the proper medication in the treatment of disease.
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