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Modelling in lifetime phenomena is a significant issue in many scientific areas. 
Sometimes many standard models lack superiority in modelling data set. Design-
ing a new form of probability distribution by using different techniques has re-
ceived a widely attention in statistical theory in the recent years. In this paper, we 
formulated exponentiated exponential Rayleigh (EER) distribution. We discussed 
the reliability and hazard rate functions of the EER distribution and computed 
the quantile, median, skewness and kurtosis. Moreover, the correlations between 
the parameters and the median, skewness, and kurtosis are investigated. Bayesian 
and non-Bayesian approaches are adopted to estimate the unknown parameters of 
EER distribution. In Bayesian approach, we are used Markov Chen Monte Carlo 
(MCMC) method to obtain the approximate Bayes point estimate. The proposed 
distribution is used to analyze, light-emitting diodes data, strength of glass fibers 
data and Wheaton River data. The estimation results of the EER distribution are 
compared with exponential Rayleigh, Rayleigh, and exponential distributions.
Key words: exponentiated and T-X family of distributions, Rayleigh distribution, 

MCMC technique, Bayes estimation, maximum likelihood estimation 

Introduction

Probability distributions have been used for a long time in various fields of life. One 
of the interesting points of the statistics is looking for modelling the phenomenon by statistical 
distributions in many applications in different sciences fields, such as medicine, astronomy, 
physical, economics and finance. There are various amount of real-life phenomenons can be 
modelling by different classical probability distributions. But, the underlying trend of the data 
in different situations may be fail to capture by using standard probability distributions. There-
fore, we search of generalizations or extensions to extend any baseline distributions, named as 
exponentiated family, developed by Gupta et al. [1], by adding new shape parameter to existing 
distribution. This method deals to appear new acceptable and flexible models. This model has 
the cumulative distribution function (CDF) define:

( ) ( ) ,F x H x x
θ

 = ∈   (1)
where θ > 0 presented the shape parameter and the baseline CDF define by H(x). Different au-
thors discussed the exponentiated extension of several baseline distributions. The exponentiat-
ed exponential distribution was introduced by Gupta and Kundu [2], Gamma exponentiated and 
Gumbel, Weibull distributions were suggested by Nadarajah and Kotz [3] and exponentiated 
modified Weibull distribution was introduced by Sarhan and Apaloo [4].
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The (T-X) family was proposed by Alzaatreh et al. [5] which has become progressive-
ly used due to its flexibility as any continuous distribution can be choosen as a generator. 

The T-X family has the CDF given:

( ) ( )
( )

- d
W G x

T X
a

Z x r t t
  

= ∫ (2)

where the function r(t) of the random variable T is a probability density function (PDF) and 
the function W[G(x)] is differentiable monotonically non-decreasing function of G(x) in [a, b]. 
Also, as x → – ∞ the function W [G(x)]→ a and when x → +∞ the function W[G(x)] → b. 

As given in [5] the T-X family of distributions was used to extended the transmuted 
family of distributions. Different transformed families of distributions such as, transmuted-G, 
Kumaraswamy transmuted-G, beta transmuted-H and T-transmuted X were discussed by Nofal  
et al. [6], Afify et al. [7], Afify et al. [8], and Jayakumar and Girish Babu [9], respectively. 

A well-known Rayleigh distribution proposed by Rayleigh [10], it has significant 
applications for modelling lifetime data in reliability, medical sciences and engineering, see  
[11, 12]. The Rayleigh CDF and PDF with scale parameter λ given, respectively:

( )
2

0,1 e
x

G x xλ
 − 
 = − ≥ (3)

and

( )
2

2
2  e 0,

x

g x x xλ

λ

 − 
 = ≥ (4)

Our study aims to present generalization for exponential Rayleigh distribution as a 
member of exponentiated family known by the EER distribution. Also, studying the properties 
and estimating the parameters of the proposed EER distribution. Finally, how the proposed 
distribution use to analysis real applicable data.

The exponentiated exponential Rayleigh distribution 

To obtain the CDF of the exponential Rayleigh distribution we first use the exponen-
tial distribution with a random variable T in eq. (2) as:

( )
( )log 1

-
0

e d
G x

ct
T XZ x c t

 − − 
−= ∫ (5)

Now, use the CDF of Rayleigh distribution eq. (3) in eq. (5), then the the exponential 
Rayleigh distribution is formulated:

( )
2

0,, , 1 e
xc

F x c xλλ
 −  
 = − ≥ (6)

The CDF of the EER distribution is obtained by using eq. (6) in eq. (1) and is ex-
pressed as the form:

( )
2

, , , 1 e 0,
xc

F x c x

θ

λλ θ
 −  
 

 
 = − ≥ 
  

(7)

where (θ > 0) is defined as shape parameter and (λ, c > 0) are scale parameters.
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The PDF corresponding to eq. (7):

( )
2 2 1

2
2  , , ,  e 1 e 0,

x xc ccf x c x x

θ

λ λθλ θ
λ

−
   − −   
   

 
 = − ≥ 
  

(8)

Remark. Special cases of the EER distribution are as follows:
	– The EER distribution is reduced to Rayleigh distribution when θ = c = 1. 
	– The EER distribution is reduced to exponentiated Rayleigh distribution when c = 1. 

The behaviour of the PDF curves for different values of parameters of the EER distri-
bution are provided in fig. 1.

Figure 1. The PDF plot of EER distribution for different choose of parameters;  
(a) λ = 1, c = 1, θ = 0.5, (b) λ = 1, c = 1, θ = 1, and (c) λ = 0.5, c = 0.5, θ = 13.5

Properties of exponentiated exponential Rayleigh distribution

In this section, we discuss the important properties of the EER distribution. These 
properties include the reliability and hazard rate functions, quantile and median, kutosis, and 
skewness. 

Reliability and hazard rate functions

In literature, the ability of population units to survive for some time is denoted by the 
reliability function, see [13, 14]. The reliability function for non-negative random variable X is 
formulated:

	 ( ) ( ) ( )1R x P X x F x= > = −

Now using eq. (7) in previous equation, the reliability function for the EER distribu-
tion:

( )
2

1 1 e
xc

R x

θ

λ
 −  
 

 
 = − − 
  

(9)

which can be obtained for different choices of parameters.
In the field of reliability analysis, hazard rate function plays essential role, and it also 

knowns as the force of mortality function. It gives at any given time a description of the instan-
taneous rate of failure and it is defined by, see [15]:

	
( ) ( )

( )
f x

h x
R x

=
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The hazard rate function for the EER distribution is obtained by using eq. (7) and  
eq. (9) in previous equation and is given:

( )

2 2

2

1

2
2    e 1 e
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(10)

Quantile and median

The quantile function plays a vital role in many applications, such as engineering, 
economics and finance. It is obtained by inverse of the CDF:

	 ( ) ( )1Q u F u−= 	
where u is the random variable from uniform distribution U(0, 1). Using the CDF of the EER 
distribution given in eq. (6) in previous equation, then the quantile function can be written:

( )
( ) /

  1/2  

11/

1log
1  

cQ u
u θ

λ
 
 =  

−  

(11)

The values of Q1, Q2 (median), and Q3 can be obtained for u = 0.25, u = 0.5, and  
u = 0.75, repectively, for more details see Gilchrist [16]. The median of the EER distribution:

	

( )
( )( )
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/

1 /2 

/

10.5 log
1 0.5  

cQ
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λ
 
 =  

−  

Skewness and Kurtosis

The quantile function can be used to study the effects of the shape parameters on the 
skewness and kurtosis. As given in Kenny and Keeping [17], the Bowley skewness is the earli-
est skewness measures which is defined:

	

  3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

     − +     
     =

   −   
   

The alternative measure to obtain kurtosis of the distribution is proposed by Moors 
[18], which is known as Moors kurtosis and defined:

	

  7 5 3 1
8 8 8 8

6 2
8 8

Q Q Q Q
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Q Q

       − + −       
       =

   −   
    	
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where Q(.) is the quantile function, given in eq. (11), the skewness and kurtosis of the EER 
distribution:

( ) ( ) ( )
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The tab. 1 has shown the values of median, skewness and kurtosis of the EER distri-
bution for different choose of the parameters λ, θ, and c. We can see that the median, skewness 
and kurtosis increase as θ increases. 

Table 1. Median, skewness and kurtosis of the EER distribution
λ θ c Median Skewness Kurtosis
2 4.5 0.5 3.94628 0.05744 1.23934
2 8.5 0.5 4.51405 0.06179 1.24471
2 13.5 0.5 4.89470 0.06571 1.24746
2 20.5 0.5 5.21827 0.06932 1.24946

Parameters estimation 
In this section, we formulate the parameters estimators of EER distribution under 

maximum likelihood (ML) method. Also, Bayes estimators of the unknown parameters are 
formulated with respected to squared error loss function.

Maximum likelihood estimation

Let X = {X1, X2, ..., Xn} be a random sample of size n from EER distribution. The joint 
likelihood function of observed sample x = {x1, x2, ..., xn} with the density function from eq. (8) 
is given:

2 2
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2   e 1 e

n
i i

i

x xn nc c

i
i
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λ λθ
λ
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−
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=

 
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∑
∏ (12)
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The log-likelihood function:
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∑ ∑ (13)

The estimate values of parameters vector Θ = (λ, c, θ) are computed under maximiza-
tion of the log-likelihood function (13). Likelihod equations are obtained by the first partially 
derivatives with respect to unknown parameters and equating to zero value:
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The likelihood equations are reduced:
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Likelihood equations are reduced to two non-linear eqs (18) and (19) of the parame-
ters λ and c can be solved by Newton Rahson or fixed-point iterations to obtain λ^ and c^. Also, 
the ML estimate of parameter θ is obtained by replacing λ and c by λ^ and c^ in eq. (17). 

Bayesian estimation

Under Bayesian approach, the parameters are considered as a random variable. Hence, 
to estimate of the parameters vector Θ = (λ, c, θ) need to formulate the joint distribution which 
is known as posterior distribution. The past experiences of the parameters are formulated in the 
form of prior distribution. Suppose that, the prior information about the parameters are inde-
pendent gamma prior distributions:

1e , , 0,  1,  2, 3k k ka b
k k k ka b kΘ− −Θ ∝ Θ > = (20)

The joint prior distribution of parameters vector Θ = (λ, c, θ) is given:

( ) ( )1 2 331 2 11 1, , e b b c baa ac c λ θλ θ λ θ − + +−− −∗π ∝ (21)
The joint posterior distribution can be formulated from eqs. (12) and (21):
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The posterior distribution eq. (22) show that, the closed form of posterior distribution 
or posterior estimate under squared error loss function need to 3-D integral which is more com-
plicated. Therefore, we adopted the important numerical method known by MCMC method as 
follows.

The posterior full conditional distributions can be obtained from eq. (22):
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The posterior distribution reduced to gamma distribution function eq. (25) and two 
function general functions similar to normal distribution. The empirical posterior distribution 
and the corresponding parameters estimate are built as Algorithm 1.

Algorithm 1. (Bayes estimate under MCMC method):
	– Step 1. Begin with initial gausses values

	
( ) ( ) ( ) ( )( ) ( )0 0 0 0 ˆ, , , , and 0ˆˆc cθ λ θλ κΘ = = = 

	– Step 2. Put the indicator κ = κ + 1.
	– Step 3. Generate θ(κ) from gamma distributions eq. (25).
	– Step 4. Generate λ(κ) and c(κ) from eqs. (23) and (24) with normal proposal distributions with 

Metropolis-Hastings (MH) algorithm.
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	– Step 5. Repeat Steps from 2-4 MC times.
	– Step 6. The Bayes estimate of the parameters vector computed from:

( )
( )

*
*

1

1ˆ ˆ , 1, 2, 3
MC

i
k k

i MC

k
MC MC

Θ Θ
= +

= =
−

∑ (26)

where MC* is the number need to reach stationary posterior distribution.

Data analysis 

In this section, three real datasets are considered as applicant on the EER distribution. 
For each dataset, we calculate the descriptive statistics by using the new form of EER distri-
bution. The results compared with three other life-time distributions, exponentiated Rayleigh 
distribution with (λ > 0) scale parameter and (θ > 0) shape parameter, exponential distribu-
tion with (λ > 0) scale parameter and Rayleigh distribution with (λ > 0) scale parameter. For 
each distribution, we computed the ML estimates and Bayes estimate with the help of MCMC 
method. The R-package are used to obtain the estimate values. The performance of the devel-
oped distribution with respected to the competing distributions are assessed under the values of 
log-likelihood function and Akaike’s information criterion (AIC).

Light-emitting diodes

The first data set that is about the case study on the light-emitting diodes manufactur-
ing process that focusses on the luminous intensities of light-emitting diodes sources, given in 
[19] as: 2.163, 5.972, 1.032, 0.628, 2.995, 3.766, 0.974, 4.352, 3.920, 1.375, 0.618, 4.575, 1.027, 
6.279, 2.821, 7.125, 5.443, 1.766, 7.155, 0.830, 3.590, 5.965, 3.177, 4.634, 7.261, 2.247, 6.032, 
4.065, 5.434, and 1.336. We fit the data to the EER distribution under consideration the distanc-
es between the fit distribution and the empirical function (Kolmogorov-Smirnov distance) and 
corresponding p-values. Kolmogorov-Smirnov 
distance is given by 0.1100 p-values is given by 
0.8925. Figure 2 has shown the draw of surviv-
al and empirical functions. The results showed 
that, EER distribution fits quite well to the given 
real data. The maximum likelihood results and 
Bayes estimates are given in tab. 2. In Bayesian 
approach, we used non-informative prior infor-
mation (mean ak = bk = 0.0001, k =1, 2, 3). The 
computed values of the log-likelihood function 
and AIC are given in tab. 3. 

Also, the summary statistics for this data 
set is given in tab. 4.

Table 2. The MLE and Bayes estimate of the parameters under light-emitting diodes data
Distribution λ

^
θ
^ 

c^ λ
^
B θ

^ 
B c^ 

B

Exponentiated exponential Rayleigh 1.2865 0.1789 0.0008 1.3365 0.1870 0.0014

Exponential Rayleigh 301.7786 0.1072 – 302.009 0.2074 –

Exponential 408.2188 – – 413.6662 – –

Rayleigh 259.688 – – 261.6774 – –

Figure 2. Diagnostic plots for the fitted EER 
survival functions for the data
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Table 3. The values of criteria under model selection 
Distribution LogLik AIC

Exponentiated exponential Rayleigh –118.3249 242.6497
Exponential Rayleigh –128.4738 260.9476
Exponential –180.6200 363.2400
Rayleigh –302.3912 606.7823

Table 4. Summary statistics for light-emitting diodes dataset
Sample Size Minimum Q1 Median Mean Q3 Maximum

30 0.618 1.473 3.678 3.619 5.441 7.261

Wheaton river data

The second data set is the exceedances of the floor peaks in m/s of Wheaton River, 
Yukon Territory, Canada, for the years from 1958 to 1984, rounded to one decimal place, given 
in [20] as: 1.7, 1.4, 0.6, 9.0, 5.6, 1.5, 2.2, 18.7, 2.2, 1.7, 30.8, 2.5, 14.4, 8.5, 39.0, 7.0, 13.3, 
27.4, 1.1, 25.5, 0.3, 20.1, 4.2, 1.0, 0.4, 11.6, 15.0, 0.4, 25.5, 27.1, 20.6, 14.1, 11.0, 2.8, 3.4, 
20.2, 5.3, 22.1, 7.3, 14.1, 11.9, 16.8, 0.7, 1.1, 22.9, 9.9, 21.5, 5.3, 1.9, 2.5, 1.7, 10.4, 27.6, 9.7, 
13.0, 14.4, 0.1, 10.7, 36.4, 27.5, 12.0, 1.7, 1.1, 30.0, 2.7, 2.5, 9.3, 37.6, 0.6, 3.6, 64.0, and 27.0.  
Table 5 includes the descriptive statistics for 
the data set. The Kolmogorov-Smirnov distance 
and corresponding p-values of fit data to the 
EER distribution is given by 0.1088 and 0.9232, 
respectively. Figure 3 has shown the draw of 
survival and empirical functions. The results 
showed that, EER distribution fits quite well to 
the given real data. The maximum likelihood 
results and Bayes estimates are given in tab. 6. 
In Bayesian approach, we used non-informative 
prior. The computed values of the log-likelihood 
function and AIC are given in tab. 7. 

Table 5. Summary statistics for Wheaton River dataset

Sample size Minimum Q1 Median Mean Q3 Maximum

72 0.100 2.125 9.500 12.204 20.125 64

Table 6. The MLE and Bayes estimate of the parameters (Wheaton River data)

Distribution λ
^

θ
^ 

c^ λ
^ 

B θ
^ 

B c^ 
B

Exponentiated exponential 
Rayleigh 4.206 ⋅ 1000 1.29 ⋅ 10–01 2.17 ⋅ 10–04 4.741 ⋅ 1000 1.33 ⋅ 10–01 7 ⋅ 10–04 

Exponential Rayleigh 791.1266 0.1026 – 794.4521 0.1144 –

Exponential 677.0260 – – 679.3214 – –

Rayleigh 103.5271 – – 105.4178 – –

Figure 3. Diagnostic plots for the fitted EER 
survival functions for the data
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Table 7. The values of criteria under model selection

Distribution LogLik AIC

Exponentiated exponential Rayleigh –357.9027 721.8054

Exponential Rayleigh –366.6486 737.2973

Exponential –470.573 943.1459

Rayleigh –610.7144 1223.429

Strength of glass fibers data

The third dataset is obtained by workers at the UK National Physical Laboratory 
about the braking strength of glass fibers of length 1.5 cm, the obtained originally given by [21] 
as: 0.55, 1.04, 1.28, 1.48, 1.51, 1.58, 1.61, 1.66, 2.00, 1.70, 1.78, 0.74, 1.11, 1.29, 1.48, 1.52, 
1.59, 1.62, 1.66, 2.01, 1.70, 1.81, 0.77, 1.13, 1.30, 1.49, 1.53, 1.60, 1.62, 1.67, 2.24, 1.73, 1.82, 
0.81, 1.24, 1.36, 1.49, 1.54, 1.61, 1.63, 1.68, 1.76, 1.84, 0.84, 1.25, 1.39, 1.50, 1.55, 1.61, 1.64, 
1.68, 1.76, 1.84, 0.93, 1.27, 1.42, 1.50, 1.55, 
1.61, 1.66, 1.69, 1.77, and 1.89. Some summa-
ries statistics for the data appear in tab. 8. The 
Kolmogorov-Smirnov distance and correspond-
ing p-values of fit data to the EER distribution is 
given by 0.2151 and 0.9578, respectively. Fig-
ure 4 has shown the draw of survival and em-
pirical functions. The results showed that, EER 
distribution fits quite well to the given real data. 
The maximum likelihood results and Bayes esti-
mates are given in tab. 9. In Bayesian approach, 
we used non-informative prior information. The 
computed values of the log-likelihood function 
and AIC are given in tab. 10. 

Table 8. Summary statistics for strength of glass fibers dataset

Sample size Minimum Q1 Median Mean Q3 Maximum

63 0.550 1.375 1.590 1.507 1.685 2.240

Table 9. The MLE and Bayes estimate of the parameters (strength of glass fibers data)

Distribution λ
^

θ
^ 

c^ λ
^
B θ

^ 
B c^B

Exponentiated exponential Rayleigh 4.7121 0.1671 0.0261 4.8472 0.15473 0.0287 

Exponential Rayleigh 1.13 ⋅ 1003 7.516 ⋅ 10–02 – 1.31 ⋅ 1003 7.871 ⋅ 10–02 –

Exponential 317.8779 – – 319.4217 – –

Rayleigh 62.4761 – – 63.5574 – –

Figure 4. Diagnostic plots for the fitted 
EER survival functions for the data
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Table 10. The values of criteria under model selection

Distribution LogLik AIC

Exponentiated exponential Rayleigh –210.2389 426.4778

Exponential Rayleigh –250.0626 504.1253

Exponential –363.2837 728.5674

Rayleigh –499.2847 1000.569

According to tabs. 3, 6, and 9, we observe the results of point estimate under non-in-
formative prior information of ML are closed to Bayes estimate. Also, according to tabs. 4, 7, 
and 10, we can see that the EER has smallest value of AIC and largest value of log-likelihhod 
hence is considered as the best fit for these data.

Conclusion

We introduced in this paper a new form of distribution called the EER distribution. 
Additionally, we discussed various statistical properties of the EER distribution. Also, the un-
known parameters are estimated with classical ML estimation. We adopt Bayesian approach 
with the help of MCMC method to obtain the estimate values of the unknown parameters. The 
proposed distribution is applied on three real data sets. It has been observed that the EER distri-
bution was the most suitable for modelling the data used. This version of EER distribution can 
be useful in modelling of complex data.
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