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In this article, we investigated the problem of estimating the parameters of power
Rayleigh distribution using a range of classical and Bayesian estimate strategies.
For applied statisticians and reliability engineers, parameter estimation provides a
guide for choosing the best method of estimating the model parameters. Six frequen-
tist estimation methods, including maximum likelihood estimation, Cramer-von
Mises estimation, Anderson-Darling estimation, least square estimation, weighted
least square estimation, and maximum product of spacing estimation, were taken
into consideration when estimating the parameters of the power Rayleigh model.
The expressions for Bayes estimators of the scale parameter are derived under
squared error and precautionary loss functions and utilizing extensions of Jeffrey's
prior and natural conjugate priors. To investigate the finite sample properties of the
parameter estimations, Monte Carlo simulations are also performed. Finally, two
applications to real data are used to highlight the versatility of the suggested model
and the comparison is made with the Rayleigh and some of its well-known exten-
sions such as exponentiated Rayleigh and weighted Rayleigh distributions.

Key words: power Rayleigh distribution, Cramer Von-Mises estimation,
Anderson-Darling estimation, weighted least square estimation

Introduction

The Rayleigh distribution (RD) initially pioneered by the physicist Lord Rayleigh [1]
while researching the issue of acoustics, specifically the analysis of random vibrations. In many
different domains, the RD is frequently employed to simulate specific aspects of wave phenom-
ena, including electronic waves. It is particularly helpful for expressing a wave’s amplitude
when two random waves with equal powers but random phase angles are combined. The RD
offers a probability distribution for the resulting wave amplitude in this situation.
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In addition acoustics and wave modelling, life testing trials and clinical research fre-
quently use the RD. It can be used to simulate the life spans of parts or systems that have a
Weibull-like failure pattern, in which breakdowns tend to occur more frequently in the begin-
ning and less frequently with time. These applications are ideally matched to the shape and
properties of the RD. The RD is a special case of Weibull distribution with the shape parameter
equal to 2. The probability density function (PDF) of the RD has the form:

2
x x
x;0)=—exp| ——|, x>0, >0

The RD offers a number of advantageous characteristics and attractive physical expla-
nations. It is frequently used to analyze lifetime data: for additional information, see Johnson
et al. [2]. Siddiqui [3] and Miller and Sackrowttz [4] discuss the genesis and other features of
this distribution. Howlader and Hossain [5] discussed the inferences for RD. Kim and Han [6]
estimated its scale parameter under general progressive censoring. However, the use of RD
is restricted to the situation of increasing failure rate and hence a number of researchers have
made significant contribution extending the practical significance of the RD, by introducing
new generalized forms or models. These extensions add more parameters or modify certain
characteristics of the present distribution in an attempt to provide greater flexibility and more
adaptability to real-world circumstances. For instance, Surles and Padgett [7] have introduced
two parameter generalized Rayleigh model. Merovci 8] introduced transmuted RD and stud-
ied its mathematical properties. Merovci and Elbatal [9] proposed Weibull RD. Mudasir et al.
[10] derived weighted Rayleigh model and discuss its informative and non-informative priors.
Ramadan et al. [11] presented the generalized power Akshaya distribution and its applications,
Also, Gomaa et al. [12] studied the unit AP-Kum-MSBL-II distribution. Moreover, Bhat ef al.
[13] showed the classical and Bayesian estimation for the extended odd Weibull power Lomax
model with applications.

Bhat and Ahmad [14] proposed power RD, an extension that introduces a power pa-
rameter to the conventional RD, altering its shape and characteristics. Typically, the PDF of the
power RD can be expressed:

2a

a 201 )y
ca,0)=— exp| ———1, vy>0, a,6>0 1
f(y:a.0) kg p{ 202J y (1)

The Cumulative distribution function corresponding to eq. (1) is given:

2a
F(y;a,@)zl—exp[—;gzj (2)

where Y is the random variable, 4 — the scale parameter, and exp — the exponential function.
The pth quantile function of power RD (PRD) is calculated by inverting the cdf given
in eq. (2) and is obtained:

0(p)=[-26%0g(1-p)]

It is important to note that the RD is defined only for Y > 0, as the distribution is typi-
cally used to model positive quantities such as wave amplitudes or distances.

In this paper, parameter estimation techniques for the power RD using Bayesian and
non-Bayesian approaches are presented.
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Classical inference methods

Estimating unknown parameters of a distribution using various estimation techniques
offers a comprehensive understanding of their performance and suitability for different sce-
narios, see Bhat ef al. [13]. This section employs six estimation techniques to estimate the
unknown parameters of the PRD. The performance of each of the six estimation procedures
on the provided dataset is thoroughly examined in order to provide an extensive assessment of
their efficacy in estimating the parameters of the PRD. A comprehensive evaluation of the six
estimation strategies, applicability for the provided dataset and their efficacy in estimating the
parameters of the PRD is provided by presenting the findings of each one. This comparison fa-
cilitates comprehension of the advantages and disadvantages of each approach to model fitting.
An outline of the estimating methods discussed is provided below:

Maximum likelihood estimation

Let yi, ys, ..., ¥, be a random sample of size n having the PDF given in eq. (2). Then,
the likelihood function is given:

L(Q,a |y) = (:—zj yza_lexp(—ﬁj 3)

where
,u:Hyk and T = E V2
k=1 k=1

The logarithmic likelihood function can be written:

zykza 4)
¢ =nlog(a)—2nlog(6)+(2a —l)log(y)—kzlzT

Now, differentiating eq. (3) partially with respect to o and 6, we obtain:

c 2(1 10
" ;yk g(v)

£:;+210g(,u)— e

The maximum likelihood estimators of parameters are obtained by solving the afore-
mentioned system of non-linear equations.
Anderson Darling estimation

By minimizing the following function with respect to o and 0, respectively, the An-
derson and Darling [15] estimators of the parameters denoted by @apr and Gypg of the PRD can
be assessed:

A=—n _%Zn:(zk —1)[ln{F(yk )} + ln{S(yn+1—k )}J

k=1
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Cramer-von-Mises estimation

and

The Cramer-von-Mises (CVM) estimation is another significant estimating approach
introduced by Macdonald [16]. The CVM estimators dcyme and a vy are derived by minimiz-
ing the value of the function C(a,0) with respect to the unknown parameters o and 6 as given:

(a0 :_+Z{ 2k~ 1}
o gt

Least square estimation and weighted least square estimation

The least square estimation (LSE) and weighted least square (WLS) estimation ap-
proaches are due to Swain et al. [17], who suggested these estimation methods while estimating
the parameters of the Beta distribution. The LSE of the parameters of the proposed model can
be obtained by minimizing the least square function LS(a, 0) with respect to the unknown pa-
rameters:

n

15(a.0)= 3, {F(yk)—%}z

k=1
By setting n; = 1, the LSE a; s and 6, can be obtained:
2
n 2a
Yk k
LS(a,0)= l—exp| ——— |-———
( ) ;{ XI{ 26’2] n+1}
While as by setting:
(n + 1)2 (n + 2)
k(n—k+1)

I’lk=

we can obtain the WLS estimators denoted by sk and Owrse:

WLS(a’Q):Zn:{%HI_ Xp[ 2925J_ni1}

k=1

Maximum product spacing estimation

The maximum product spacing estimation (MPSE) method was introduced by Cheng
and Amin [18] as an alternative to maximum likelihood (ML) estimation methodology for es-
timating the parameters of continuous univariate distributions. Additionally, Ranneby [19] in-
dependently studied the method, considering it as an approximation Kullback-Leibler measure
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of information and elucidated its consistency property. To motivate our choice of the MPSE
method, Cheng and Amin [18] provided compelling evidence by establishing its efficiency and
consistency under more general conditions compared to MLE procedure.

We begin by defining the uniform spacings of a random sample from the power RD.
Given a random sample of size n from the power RD with order statistics Y, Y, ..., Y the
uniform spacings are defined as the differences between consecutive order statistics as given:

D =F(yy)-Flruy) k=121

where
F(y(o))zo and F(y(n+l)):1
Since, we are sampling from PRD, thus:
2a
k)
F(y(k))—l—exp - Y
and
2a
Y(k-1)
Fl3ay ) =1-ex0] == 3
then
2a 2a
) V-
D, =ql-exp| - (222 —sl—exp| — (;912

The parameter estimates are obtained by maximizing:

n+l

1
MPS (a,0) = p— Zlong
k=1
2a 2a
LS ) Vi)
MPS(a,H):n+IZlog 1-exp| — vz —ql—exp| - 207
k=1

Bayesian inference method

In this section, we explore the estimation of a scale parameter in the PRD. To enhance
our understanding, we consider two distinct prior distributions and employ three different loss
functions. This allows us to investigate the effects of different assumptions on estimating pro-
cess, providing an exhaustive illustration of the parameter estimation procedure in the context
of the PRD.

Posterior distribution under the assumption of different priors

The aim of this section is to determine Bayesian estimators for the scale parameter of
the PRD using different loss functions and priors. Additionally, a comparison will be conducted
to evaluate these estimations.

In the context of estimating the scale parameter of the PRD, an extension of Jeffrey’s
and natural conjugate priors are utilized. When applying the extension of Jeffrey’s prior for
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parameter estimation, previous knowledge is incorporated into the procedure. Jeffrey’s prior is
well-known for its invariance quality, which means it remains unaltered even after re-param-
eterization, making it a popular choice in Bayesian statistics. The extension of Jeffrey’s prior
proposed by Al-Kutubi [20], takes the form:

m (6) o [1(9)]6 , ceR’

where

o 8% log f(y;a,0)
1(9) = nE{ o0

is the Fisher information matrix for the distribution given in eq. (1).
Thus, for scale parameter 6 the extension of Jeffrey’s prior is given:

1
T (9) = 625’
The posterior density of @ under the assumption of extension of Jeffrey’s prior is ob-

tained:
R(8)= L(0,4])m (0)
" U 20 T )1
R(0)= 6% lk_:!y"z leXp(_WJ PE:
where

92(n+c)

T 1
wexp(—zj F(n+c—2j
K= [— 202 do-

2(n+c n+c—1/2
0 (n+e) 2(Tj

2
n+c-1/2
3]
K=—"rs
F[n +c —j
2

Hence, the posterior density of 8 is obtained:

(T JYHCI/Z ( T J

2| — exXpl —

R(0)=—2 20 5)
492("“)1“(11 +c— ;)

therefore
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The natural conjugate prior is a term used in Bayesian statistics, notably in relation
exponential family distributions. In an exponential family, the probability function can be rep-
resented in a precise form that is mathematically convenient to work with. In the context of
estimating the scale parameter of the PRD, the natural conjugate prior chosen can be written in
the form:

m,(0) = ! exp(—ij, a,b>0

6a+1 262

Similarly, the posterior distribution of 6 using natural conjugate prior is thus obtained:

[T+b e T+b
2 > j exp| — Iy
P (0)= (6)

F(}’l + aj 02n+a+1
2

Bayesian estimation under three loss functions

In the fields of statistics and decision theory, a loss function is a mathematical func-
tion that assigns a real number to an event, which intuitively represents the associated cost of
the event. This function is commonly employed in parameter estimation, where the event in
consideration relates to the disparity between estimated and actual values for a given dataset.
The aforementioned Lemma is utilized to derive results in this context.

Parameter estimation under squared error loss function

The squared error loss function (SELF), introduced by Legendge [21] and Gauss [22],
is defined as the squared difference between the estimated parameter fand true parameter 0,
with ¢, as constant, the SELF is represented:

L(a,é)zcl (a—é)z, ¢ >0

By utilizing SELF and under the assumption of extension of Jeffrey’s prior, the risk
function, denoted as R(0, 0), is given:

R(@,é):TL(e,é)ﬁ(e)de

where R(6) is the posterior density defined in eq. (4), thus:

1/2 -1 .
R(6.6)=¢, %@2_2@ Tlrrezl)
2(n+c—2j F(n+c—2j

The Bayes estimator is the solution of the equation:

aR(e,é)
a—ézo

and is given
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é_(]"jl/z F(n+c—1)
2 F(n+c—1j
2

Similarly, by utilizing SELF and posterior distribution of 6 undernatural conjugate
prior, the risk function is computed:

Where P,(0) is the posterior density defined in eq. (5), thus:

-1
1/2F(n+ j
O R e 2

o3 (3

The Bayes estimator for parameter 6 is obtained by minimizing the risk function and

given:

% =(T+bjm r(n+“2‘j R(0.6)= TL(H,@)PZ (6)do

2 F[n+aj 0
2

Parameter estimation under precautionary loss function

The precautionary loss function (PLF) introduced by Norstrom [23] is an asymmetric
loss function that penalizes the squared difference between the true parameter ¢ and the estima-
tor fto the estimator 6. Mathematically, PLF is represented:

A\2
. (0-9)
1(0,6)=*—
0
The asymmetric structure of this loss function is reflected in the denominator, which
involves the estimator 6. The structure penalizes underestimation more severely when the esti-
mator @ is smaller than the true parameter 6, as the denominator decreases.
By using PLF and posterior distribution of # under the assumption of extension of

Jeffrey’s prior, the risk function is given:
12
A I'n+c-1
. H(Zj Lnte-l)

_r
2(n+c—3j0 2 F(n+c—1j
2 2

The Bayes estimator for scale parameter 6 is obtained by minimizing the risk function
and given:

R(H,é):

1/2
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Similarly, by using PLF and posterior distribution of & under the natural conjugate
prior, the risk function is given:

n+——

I

2[n+“—1jé r(n+“j
2 2

The Bayes estimator is the solution the equation:
R (0,0
*9)
00

which results
12

T+b
2[n+“—1j
2

Parameter estimation under entropy loss function

é:

In numerous practical scenarios, it seems to be more plausible to articulate the loss
using the ratio 6/6 . When considering this circumstance, Calabria and Pulcini [24] highlight the
significance of an advantageous asymmetrical loss function, namely the entropy loss function
(ELF) given:

L(5) o [5-log(5)-1]

By utilizing ELF for some constant ¢, and posterior distribution of & under the as-
sumption of extension of Jeffrey’s prior, the risk function is obtained:

Tn+c—l/2 T
i o) 75 ol
R(H,Q):czjlg—log(—J—l} do
0

0 92(n+c)F(n+c—;j

o
0d)-co| (2] rogfi)— 20y
r

2F(n+c—lj
2

Now solving

we obtain the Bayes estimator:
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Similarly, by utilizing ELF and posterior distribution of € under the assumption of
natural conjugate prior, the risk function is obtained:

) 1/2 F[l’l-l—azﬂj F’[l’l-ﬁ-;}
R(od)-c|(+3) 6-1og(6)-—— 20 -1
* F(n+;j 2F(n+gj

The Bayes estimator for scale parameter 6 is obtained by minimizing the risk function
and given:

a
in+—
é:(T+bjl/2 (" 2)
2 F(n+a+1j
2

In this section, we present an overview of a Monte Carlo simulation study that encom-
passes the assessment of various estimation methods, including MLE, ADE, CVME, MPSE,
LSE, WLSE, and Bayesian methods. The evaluation is performed using performance metrics
such as bias, mean square error (MSE), and mean relative error (MRE) with corresponding

formulas:
B R YoN YDA 1<L(3-9
Bzas=ﬁl§l (19,-—19,-), MSE=F;:1 (191_‘91) s MRE:FE1 (T]

1

Simulation results

The goal of the Monte Carlo simulation is to assess the performance of different esti-
mation methods in the context of the PRD. The simulation is conducted using the R program-
ming language, exploring different sample sizes and parameter values for the PRD. Random
samples of sizes 25, 50, 75, 100, and 150 are generated from the PRD with three sets of real
parameter values: Set 1 (« = 1.25, 8 =0.25), Set 2 (e = 0.75, 0 =0.75), and Set 3 (« = 1.75, 0
= 1.25). The quantile function (QF) of PRD is utilized to generate 1000 random samples (N =
1000) for each scenario. The simulation results for non-Bayesian methods were obtained using
R software and are presented in tabs. 1-3. Similarly, the results for Bayesian methods can be
found in tab. 4.
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Table 1. Simulation results (a = 1.25, 8 = 0.25)
Maximum likelihood estimates
Sas?z% 15 Average estimate Bias MSE MRE
a 0 a 0 a 0 a 0
25 1.31830 0.23914 0.17756 0.03331 0.05336 0.00177 0.14205 0.13324
50 1.28286 0.24542 0.11454 0.02316 0.02214 0.00086 0.09163 0.09266
75 1.27317 0.24594 0.09161 0.01941 0.01410 0.00060 0.07329 0.07766
100 1.26902 0.24672 0.08327 0.01731 0.01113 0.00047 0.06661 0.06923
150 1.26145 0.24778 0.06374 0.01367 0.00676 0.00030 0.05099 0.05467
Anderson Darling estimates
25 1.27377 0.24879 0.17880 0.03709 0.05303 0.00211 0.14304 0.14838
50 1.26370 0.24840 0.12096 0.02566 0.02486 0.00106 0.09677 0.10265
75 1.26073 0.24965 0.09763 0.02090 0.01552 0.00070 0.07810 0.08361
100 1.25091 0.25133 0.08554 0.01838 0.01189 0.00053 0.06843 0.07350
150 1.25299 0.25049 0.07153 0.01492 0.00806 0.00035 0.05723 0.05969
Cramer-Von Mises estimates
25 1.32540 0.23970 0.21312 0.04243 0.08580 0.00297 0.17050 0.16971
50 1.29295 0.24461 0.14321 0.03026 0.03431 0.00144 0.11457 0.12104
75 1.27820 0.24570 0.11960 0.02514 0.02275 0.00098 0.09568 0.10057
100 1.26953 0.24680 0.09623 0.02052 0.01474 0.00066 0.07699 0.08209
150 1.25996 0.24858 0.08203 0.01794 0.01057 0.00050 0.06562 0.07174
Maximum product spacing estimates
25 1.17062 0.27357 0.17651 0.04021 0.04661 0.00243 0.14120 0.16083
50 1.19548 0.26442 0.12257 0.02760 0.02229 0.00114 0.09806 0.11039
75 1.20916 0.26006 0.09874 0.02115 0.01492 0.00070 0.07899 0.08462
100 1.21683 0.25803 0.08145 0.01804 0.01044 0.00051 0.06516 0.07215
150 1.22122 0.25676 0.06685 0.01429 0.00687 0.00031 0.05348 0.05717
Least square estimates
25 1.24654 0.25746 0.20050 0.04413 0.06558 0.00296 0.16040 0.17652
50 1.24978 0.25336 0.13882 0.02946 0.03018 0.00134 0.11105 0.11786
75 1.24887 0.25218 0.11618 0.02516 0.02116 0.00097 0.09294 0.10063
100 1.24809 0.25163 0.09824 0.02173 0.01548 0.00073 0.07859 0.08692
150 1.25031 0.25069 0.07596 0.01681 0.00934 0.00044 0.06077 0.06725
Weighted least square estimates
25 1.24883 0.25618 0.18518 0.04001 0.05641 0.00245 0.14815 0.16003
50 1.25736 0.25116 0.13014 0.02736 0.02786 0.00117 0.10411 0.10945
75 1.24896 0.25245 0.10054 0.02129 0.01577 0.00070 0.08043 0.08517
100 1.25242 0.25044 0.08767 0.01894 0.01242 0.00056 0.07013 0.07576
150 1.25781 0.24989 0.07031 0.01473 0.00794 0.00033 0.05625 0.05893
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Table 2. Simulationr (a = 0.75, 8 = 0.75)

Maximum likelihood estimates

Sasrinzile Average estimate Bias MSE MRE
G 0 a 0 a 0 a 0
25 0.79098 | 0.75517 | 0.10653 | 0.06971 | 0.01921 | 0.00814 | 0.14204 | 0.09295
50 0.76971 0.75452 | 0.06872 | 0.04535 | 0.00797 | 0.00340 | 0.009163 | 0.06047
75 0.76390 | 0.75087 | 0.05497 | 0.03808 | 0.00508 | 0.00235 | 0.07329 | 0.05077

100 0.76141 | 0.75089 | 0.04996 | 0.03314 | 0.00401 | 0.00168 | 0.06662 | 0.04419

150 0.75687 | 0.74984 | 0.03825 | 0.02725 | 0.00243 | 0.00116 | 0.05100 | 0.03634

Anderson Darling estimates

25 0.76426 | 0.75306 | 0.10728 | 0.06744 | 0.01909 | 0.00750 | 0.14304 | 0.08992
50 0.75822 | 0.74989 | 0.07258 | 0.04766 | 0.00895 | 0.00365 | 0.09677 | 0.06354
75 0.75644 | 0.75332 | 0.05858 | 0.03912 | 0.00559 | 0.00238 | 0.07810 | 0.05217

100 0.75054 | 0.75259 | 0.05133 | 0.03335 | 0.00428 | 0.00179 | 0.06843 | 0.04447

150 0.75180 | 0.75221 | 0.04292 | 0.02818 | 0.00290 | 0.00128 | 0.05723 | 0.03758

Cramer-Von Mises estimates

25 0.79524 | 0.75170 | 0.12787 | 0.07086 | 0.03089 | 0.00842 | 0.17050 | 0.09448
50 0.77577 | 0.75535 | 0.08593 | 0.04819 | 0.01235 | 0.00380 | 0.11457 | 0.06426
75 0.76692 | 0.75100 | 0.07176 | 0.03910 | 0.00819 | 0.00243 | 0.09568 | 0.05214

100 0.76172 | 0.75041 | 0.05774 | 0.03478 | 0.00531 | 0.00189 | 0.07699 | 0.04637

150 0.75597 | 0.75005 | 0.04922 | 0.02786 | 0.00381 | 0.00125 | 0.06562 | 0.03715

Maximum product spacing estimates

25 0.70238 | 0.75949 | 0.10591 | 0.06383 | 0.01678 | 0.00668 | 0.14122 | 0.08511
50 0.71729 | 0.75309 | 0.07356 | 0.04426 | 0.00802 | 0.00322 | 0.09808 | 0.05901
75 0.72550 | 0.75064 | 0.05925 | 0.03677 | 0.00537 | 0.00210 | 0.07900 | 0.04903

100 0.73011 | 0.75038 | 0.04887 | 0.03208 | 0.00376 | 0.00163 | 0.06516 | 0.04277

150 0.73274 | 0.75018 | 0.04012 | 0.02554 | 0.00248 | 0.00101 | 0.05349 | 0.03406

Least square estimates

25 0.74792 | 0.75706 | 0.12303 | 0.07133 | 0.02361 | 0.00865 | 0.16040 | 0.09511
50 0.74987 | 0.75421 | 0.08329 | 0.04882 | 0.01087 | 0.00378 | 0.11105 | 0.06509
75 0.74932 | 0.75154 | 0.06971 | 0.03961 | 0.00762 | 0.00250 | 0.09294 | 0.05282

100 0.74885 | 0.75028 | 0.05894 | 0.03308 | 0.00557 | 0.00171 | 0.07859 | 0.04411

150 0.75019 | 0.75037 | 0.04558 | 0.02752 | 0.00336 | 0.00119 | 0.06077 | 0.03669

Weighted least square estimates

25 0.74930 | 0.75679 | 0.11111 | 0.06473 | 0.02031 | 0.00692 | 0.14815 | 0.08630
50 0.75442 | 0.75334 | 0.07808 | 0.04643 | 0.01003 | 0.00356 | 0.10411 | 0.06190
75 0.74938 | 0.75400 | 0.06032 | 0.03879 | 0.00568 | 0.00243 | 0.08043 | 0.05171

100 0.75145 | 0.75067 | 0.05260 | 0.03314 | 0.00447 | 0.00182 | 0.07013 | 0.04419

150 0.75469 | 0.75354 | 0.04218 | 0.02749 | 0.00286 | 0.00120 | 0.05625 | 0.03665
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Table 3. Simulation Results (a = 1.75, 8 = 1.25)
Maximum likelihood estimates
Sasr?zzle Average estimate Bias MSE MRE
G 0 a 0 G 0 G 0
25 1.84561 | 1.30568 | 0.24858 | 0.18097 | 0.10459 | 0.06203 | 0.14205 | 0.14478
50 1.79600 | 1.27899 | 0.16036 | 0.11346 | 0.04340 | 0.02256 | 0.09163 | 0.09077
75 1.78244 | 1.26622 | 0.12825 | 0.09280 | 0.02764 | 0.01460 | 0.07329 | 0.07424
100 1.77663 | 1.26347 | 0.11657 | 0.08330 | 0.02181 | 0.01061 | 0.06661 | 0.06664
150 1.76602 | 1.25701 | 0.08924 | 0.06534 | 0.01325 | 0.00693 | 0.05099 | 0.05227
Anderson Darling estimates
25 1.78328 | 1.27785 | 0.25032 | 0.16886 | 0.10395 | 0.05376 | 0.14304 | 0.13509
50 1.76918 | 1.26163 | 0.16935 | 0.11606 | 0.04872 | 0.02360 | 0.09677 | 0.09284
75 1.76503 | 1.26404 | 0.13668 | 0.09569 | 0.03042 | 0.01463 | 0.07810 | 0.07655
100 1.75127 | 1.25715 | 0.11976 | 0.08142 | 0.02331 | 0.01115 | 0.06843 | 0.06514
150 1.75419 1.25691 0.10015 | 0.07087 | 0.01580 0.0796 0.05723 | 0.05670
Cramer-Von Mises estimates
25 1.85556 1.30515 | 0.29838 | 0.18791 0.16818 | 0.06937 | 0.17050 | 0.15033
50 1.81013 1.28692 | 0.20050 | 0.12657 | 0.06726 | 0.02820 | 0.11457 | 0.10125
75 1.78949 | 1.26982 | 0.16744 | 0.10247 | 0.04459 | 0.01688 | 0.09568 | 0.08198
100 1.77734 | 1.26329 | 0.13473 | 0.08659 | 0.02889 | 0.01223 | 0.07699 | 0.06927
150 1.76394 | 1.25689 | 0.11484 | 0.07017 | 0.02072 | 0.00801 | 0.06562 | 0.05614
Maximum product spacing estimates
25 1.63890 | 1.23416 | 0.24712 | 0.15918 | 0.09137 | 0.04249 | 0.14121 | 0.12735
50 1.67368 | 1.23143 | 0.17163 | 0.11031 | 0.04369 | 0.01936 | 0.09807 | 0.08825
75 1.69283 | 1.23304 | 0.13826 | 0.09046 | 0.02924 | 0.01285 | 0.07900 | 0.07237
100 1.70359 | 1.23568 | 0.11403 | 0.07738 | 0.02047 | 0.00947 | 0.06516 | 0.06190
150 1.70972 | 1.23694 | 0.09360 | 0.06314 | 0.01348 | 0.00617 | 0.05348 | 0.05051
Least square estimates
25 1.74516 | 1.27170 | 0.28071 | 0.17783 | 0.12853 | 0.06060 | 0.16040 | 0.14226
50 1.74969 | 1.26244 | 0.19435 | 0.12422 | 0.05916 | 0.02570 | 0.11106 | 0.09937
75 1.74841 | 1.25567 | 0.16265 | 0.10115 | 0.04147 | 0.01687 | 0.09294 | 0.08092
100 1.74732 | 1.25197 | 0.13754 | 0.08410 | 0.03035 | 0.01122 | 0.07859 | 0.06728
150 1.75044 | 1.25236 | 0.10635 | 0.06739 | 0.01831 0.00739 | 0.06077 | 0.05391
Weighted least square estimates
25 1.74836 1.27084 | 0.25926 | 0.16468 | 0.11056 | 0.04938 | 0.14815 | 0.13174
50 1.76031 1.26469 | 0.18219 | 0.11921 0.05460 | 0.02506 | 0.10411 0.09537
75 1.74855 | 1.25929 | 0.14076 | 0.09575 | 0.03092 | 0.01515 | 0.08043 | 0.07660
100 1.75339 | 1.25468 | 0.12274 | 0.08193 | 0.02435 | 0.01115 | 0.07013 | 0.06555
150 1.76093 | 1.26153 | 0.09843 | 0.06840 | 0.01556 | 0.00762 | 0.05625 | 0.05472
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Table 4. Bayesian estimate and posterior risk in parenthesis for simulated data

Sample Parameter (true value) Methods of estimation

size, 2 2 R R
n a c G (6 OmLe OseLr ObLr Okr

0.614266 0.617507 0.607966

0.25 1 05 | 04 (0.072356) | (0.605136) | (0.091926)

0.601857 0.604904 0.595928

125 115 0.8 (0.202861) | (0.565529) | (0.174041)

25 1.31830 0.601872

0.590170 0.593042 0.584577

225 1 25 | 12 (0316550) | (0.529481) | (0.247110)

0.579139 | 0.581851 | 0.573850
(0.415619) | (0.496564) | (0.311808)

0.413489 0.414551 0.411395
(0.014563) | (0.118679) | (0.021150)

0409333 | 0410363 | 0.407302
(0.041567) | (0.112915) | (0.039057)

0405301 | 0.406299 | 0.403328
(0.065932) | (0.107460) | (0.053887)

0401385 | 0.402355 | 0.399469
(0.087868) | (0.102294) | (0.065796)

0.332908 0.333473 0.331789
(0.003969) | (0.032283) | (-0.00392)

0330681 | 0.331235 | 0.329585
(0.011321) | (0.030688) | (-0.00923)

0.328499 0.329041 0.327423
(0.017932) | (0.029164) | (-0.01585)

0.326359 | 0.326891 0.325304
(0.023851) | (0.027709) | (-0.02373)

0286512 | 0.286875 | 0.285791
(0.000895) | (0.007261) | (-0.01441)

0285076 | 0.285433 | 0.284366
(0.002512) | (0.006789) | (-0.02938)

0.283661 0.284013 0.282961
(0.003911) | (0.006341) | (-0.04485)

0.282267 0.282614 0.281578
(0.005109) | (0.005916) | (-0.06081)

0231609 | 0231804 | 0.231223
(0.000176) | (0.001419) | (-0.01439)

0230836 | 0231029 | 0.230452
(0.000564) | (0.001518) | (-0.02859)

0.230071 0.230261 0.229691
(0.001003) | (0.001620) | (-0.04259)

0229312 | 0229501 | 0.228936
(0.001497) | (0.001726) | (-0.05638)

3.25 3.5 1.6

0.25 0.5 0.4

1.25 1.5 0.8
50 1.28286 0.409336
2.25 2.5 1.2

3.25 3.5 1.6

0.25 0.5 0.4

1.25 1.5 0.8
75 1.27317 0.330682
2.25 2.5 1.2

3.25 3.5 1.6

0.25 0.5 0.4

1.25 1.5 0.8
100 1.26902 0.285077
2.25 2.5 1.2

3.25 3.5 1.6

0.25 0.5 0.4

1.25 1.5 0.8
150 1.26145 0.230836
2.25 2.5 1.2

3.25 3.5 1.6
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Conclusions at the end of simulation results

The relative biases of & and 6 decrease as the sample size n increases across all esti-
mation methodologies.

e VWith the increase in sample size n, the MSE diminishes for all estimation approaches, meet-
ing the criteria of consistency.

e Across all estimation techniques, the gap between the estimated values and the true param-
eters shrinks as n increases.

® The method of MPSE demonstrates superior performance in terms of MSE compared to
other methods in most scenarios.

e With the increase in sample size n, posterior risk under SELF, PLF, and ELF decreases.
The general deduction derived from the simulation outcomes indicates that with an increase
in sample size, the bias, MSE and MRE for all parameters exhibit a consistent decrease,
eventually converging towards zero. This trend highlights the accuracy and precision of
both the numerical computations related to the power RD parameters and the employed
estimation methodologies.

Model validation and application

In this section, the utilization of the PRD distribution is illustrated through the appli-
cation on two real datasets. The presentation of the datasets employed for the implementation
of the proposed distribution is provided:

Dataset I: The tensile strength, expressed in GPa, of 69 carbon fibres put under stress
at gauge lengths of 20 mm is illustrated in this dataset, which was first reported by Bader and
Priest [25]. The recorded data is presented in the following manner:

0.312,0.314,0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.977, 1.006, 1.021,
1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253,1.270, 1.272, 1.274, 1.301, 1.301,
1.359,1.382,1.382,1.426, 1.434,1.435,1.478,1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570,
1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697,1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821,
1.848, 1.880, 1.954,2.012, 2.067, 2.084,2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

Dataset II: This dataset illustrates the duration until malfunction of 40 turbocharger
units in diesel engines. Akarawak et al. [26] have previously employed this dataset for analysis.
The recorded data consists of the following observations:

1.6,2.0,2.6,3.0,3.5,3.9,4.5,4.6,4.8,5.0,5.1,5.3,54,5.6,5.8,6.0,6.0,6.1,6.3,6.5, 6.5, 6.7,
7.0,7.1,73,7.3,73,7.7,7.7,7.8,7.9,8.0,8.1, 8.3, 8.4,84,8.5,8.7, 8.8, 9.0.

The evaluation of PRD performance is conducted through the assessment of good-
ness of fit criteria (GoF), which encompasses metrics such as the Akaike information cri-
terion (AIC), corrected AIC (CAIC), Schawrz information criterion (SIC), Hannan-Quinn
information criterion (HQIC), Cramer-von Mises, (W ), Anderson-Darling (AD") and Kolm-
ogorov-Smirnov (KS) test statistics along with their respective p-values. Typically, a model
that exhibits the lowest AIC, CAIC, BIC and KS values coupled with the highest p-value is
deemed to offer a superior fit for the data. tabs. 5-9 provide the maximum likelihood estima-
tors (MLE) and GoF criteria for PRD as well as other distributions in all datasets. The PRD
model shows excellent fits in fig. 1 for the two data sets when it is compared with RD, ERD
and WRD models.
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Table 5. Model selection and GoF statistics for the Dataset-1
Model AIC SIC CAIC HQIC A wr KS p-value

PRD 102.0657 | 106.5339 | 102.2475 | 103.8384 | 0.2275 0.0267 0.0440 0.9993

RD 120.8367 | 123.0708 | 120.8964 | 121.7230 | 0.4291 0.0572 0.1999 0.0081

ERD 105.8098 | 110.2780 | 105.9916 | 107.5825 | 0.5052 0.0691 0.0752 0.8293

WRD 104.6399 | 109.1081 | 104.8217 | 106.4126 | 0.4191 0.0558 0.0664 0.9205

Table 6. Model selection and GoF statistics for the Dataset-11
Model AIC SIC CAIC HQIC A /4 KS p-value
PRD 168.9510 | 172.3288 | 169.2754 | 170.1723 | 0.5742 0.0771 0.1079 0.7398
RD 185.7655 | 187.4544 | 185.8707 | 186.3761 1.6317 0.2527 0.9978 2.2e-16
ERD 175.5926 | 178.9704 | 175.9169 | 176.8139 | 1.0921 0.1595 0.1173 0.6399
WRD 174.0418 | 177.4196 | 174.3661 | 175.2631 | 0.9817 0.1413 0.1157 0.6578

Table 7. The ML Estimates of different models using Dataset-I and Dataset-11

Dataset I Dataset 11
Model :
Parameter estimates
PRD | a=1.62324 | 6=1.54249 - 6=193623 | 0=29.93145 -
RD - 6=1.08334 - - 0=14.62721 -
ERD | ¢4=2.17464 | 0=0.66219 - 6=238607 | 0=0.03778 -
WRD - 0=0.74574 | p=2.22097 - 0=2.78369 | f=2.99194

Table 8: Model estimates and GoF statistics using different estimation approaches for dataset-1

=

Method a 0 LL A" w KS p-value
MLE 1.62323 1.54249 49.03285 0.22755 0.02670 0.04400 0.99933
ADE 1.66180 1.57740 49.06434 0.22363 0.02610 0.04079 0.99984

CVME 1.71848 1.61718 49.23791 0.21840 0.02529 0.03627 0.99999
LSE 1.68127 1.59363 49.10448 0.22182 0.02582 0.03983 0.99990

WLSE 1.65419 1.57458 49.05349 0.22472 0.02626 0.04266 0.99962

MPSE 1.53532 1.44160 49.23232 0.23664 0.02813 0.07094 0.87813

Table 9. Model estimates and GoF statistics using different estimation approaches for Dataset-11

Method a 0 LL A w KS p-value
MLE 1.93623 29.92215 82.47551 0.57309 0.07700 0.10772 0.74214
ADE 1.83076 25.29793 82.71921 0.62181 0.08434 0.08746 0.91964

CVME 1.90089 29.53607 82.74596 0.60319 0.08151 0.08780 0.91742
LSE 1.83520 26.07100 82.89007 0.62731 0.08517 0.09638 0.85135

WLSE 1.94835 31.67120 82.55653 0.57966 0.07797 0.08425 0.93898
MPSE 1.57307 13.76369 83.75375 0.68757 0.09447 0.14974 0.53117
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Figure 1. Histogram plots

Discussion and conclusion

This work significantly advances the field of statistical methodology by examining
parameter estimation techniques for the PRD. The research yields insightful information that
may be used by experts in a variety of fields, especially applied statistics and reliability engi-
neering, through the evaluation of classical and Bayesian methodologies. In order to estimate
PRD parameters, a thorough overview of the advantages and disadvantages of six frequentist
estimation techniques, including MLE, W*, AD*, least square, weighted least square and maxi-
mum product of spacing estimations, is provided. Based on data properties and analytical goals,
this study provides a useful road map for selecting the best estimation technique. Additionally,
by offering different frameworks for parameter estimation, extending the research to Bayesian
estimation broadens the scope of methodology. The range of instruments available to research-
ers for trustworthy statistical inference is expanded by the introduction of Bayes estimators
under various loss functions and the inclusion of priors, such as Jeffrey’s prior and natural con-
jugate priors. The Monte Carlo simulations are used to assess the finite sample qualities of the
estimation techniques in order to improve the accuracy and relevance of the results. The study
gives practitioners assurance about the efficacy of the suggested approaches in a range of sam-
ple scenarios by putting the estimation methods through empirical evaluation. The applicability
of the PRD model to actual data demonstrates how flexible and effective it is at identifying
complex patterns in data. By contrasting it with well-known distributions such as the RD and
its extensions, one may highlight the unique advantages of the PRD in simulating a variety of
events, hence highlighting its potential utility in real-world contexts.

In conclusion, the investigation of parameter estimation for the PRD provides an ex-
tensive analysis that unites classical and Bayesian approaches. By means of the evaluation of
several estimating methods, empirical analyses, and real-world examples, the research pro-
vides experts with vital tools for solid statistical inference in a variety of scenarios. This study
provides a solid foundation for future developments in statistical methodology and its use in
real-world settings.
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