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This paper delves into the influence of an external classical field on the statistical 
and dynamical properties of a four-level atom interacting with a cavity field. 
Leveraging mathematical transformations applied to the external classical field, 
the system’s wave function was derived. Subsequently, the impact of this exter-
nal field and a detuning parameter on atomic inversion, Shannon-entropy, the 
Q-function, and relative coherence is explored. The analysis encompassed three 
distinct initial states for the atomic system. The results unveiled that the specific 
type of classical field employed acts as a control parameter, inducing squeezing 
within the system, as demonstrably evidenced by the Q-function analysis. Con-
versely, the influence of the detuning parameter exhibited dependence on the 
initial state of the atomic system. However, in broader terms, it appears to be 
responsible for driving the system towards chaotic behavior. 
Key words: external classical field, shannon-entropy, Q-function,  

relative coherence.

Introduction

Since quantum entanglement is thought to be the key idea that separates quantum 
information theory from classical theory, many researchers have been interested in studying it 
[1]. In quantum information, quantum computation, quantum cryptography, and teleportation, 
entanglement is essential [2-4]. A lot of work has gone into describing the characteristics of 
entanglement between quantum systems from the standpoints of applied and theoretical quan-
tum information. Several methods for creating multiparticle entanglement have been put forth. 
The Jaynes-Cummings model (JCM) [5] is used to study the entanglement between the atom 
and the field. The JCM is still a key model in quantum optics even though it is straightfor-
ward in explaining how a two-level atom interacts with a single-mode quantum radiation field  
[6, 7]. Notably, the JCM has been nearly perfectly realized in tests using Rydberg atoms in su-
perior superconducting cavities [7]. This model provides a theoretical foundation for forecast-
ing a variety of fascinating events, such as atomic-field entanglement [7] and quantum collapse 
and revival [8]. There has also been a lot of interest in JCM generalizations to the two-atom 
state [9]. The impact of external fields on the dynamics of entanglement between a qubit and 
a single-mode field has been studied [9]. It has also been investigated how the Kerr medium, 
or Stark shift, affects the interaction of a multi-level atom in a cavity filled with a single-mode 
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field [10, 11]. On the other hand, research has been done on how an external field affects the 
interaction of two two-level atoms when there is a single- and two-mode field present [12, 13]. 
The impact of external classical fields on atom-field interactions has been the subject of re-
cent research involving a variety of external environments, such as magnomechanical systems  
[14, 15], graphene layers [16, 17], and optomechanical cavities [18, 19].

Furthermore, analyzing statistical features and their connection the dynamical evolu-
tion of the system is an essential part of researching light-matter interactions [20]. Within this 
framework, atomic inversion, quasi-probability distributions, and information entropy become 
potent instruments that provide deep understanding of the dynamics and information that the 
quantum system contains. A crucial parameter for understanding and describing the behavior 
of atoms interacting with electromagnetic fields is atomic inversion, which is measured by the 
population difference between the ex-cited and ground states of the atom [21]. It supports a 
number of phenomena, such as the creation of non-classical light states [22], coherent control 
[23], and lasing [24]. A fundamental idea in information theory, Shannon-information entropy 
has found a home in the study of quantum systems [25]. It measures the amount of information 
or uncertainty connected to a specific quantum state [26]. Deciphering phenomena like entan-
glement, decoherence, and the dynamics of open quantum systems has been made possible by 
this idea [27, 28]. A high entropy value frequently indicates a mixed state of the system in the 
context of atom-field interactions [29]. Lastly, the Husimi Q-function and the Wigner function 
are examples of quasi-probability distributions that have become effective tools for examining 
and visualizing the phase-space representations of quantum states [30, 31]. Through the use of 
classical-like variables, these distributions allow for the interpretation of quantum phenomena, 
bridging the gap between the quantum and classical descriptions of physical systems [32]. The 
field subsystem [33], the atomic subsystem [34, 35], or even the atom and field simultaneously 
[36] can all be analyzed using quasi-probability distributions in the context of quantum systems.

Description of the physical model

This study examines a physical system consisting of a single diamond-shaped four-lev-
el atom surrounded by a cavity field and simultaneously stimulated by an external classical laser 
field. The ground state, represented by the symbol |l1⟩, and the two intermediate states, |l2⟩ and 
|l3⟩, are the permitted transitions between the atomic energy levels. Transitions from these inter-
mediate states to the stimulated state, denoted by |l4⟩, are also permitted. A two-photon quantized 
field is the classical field. The system is described by the Hamiltonian operator (ћ = 1):
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ˆ ˆ ˆ ˆ=H H H H+ + (1)
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where ωf  and ωi are the characteristic frequencies of the cavity field and the atomic transition, 
respectively, λ1 and λ1 – the parameters quantify the coupling strengths between the atom and 
the cavity field, and the external field, respectively, a^ – the bosonic annihilation of the quan-
tized field with the hermitian conjugate a^† which satisfy [a^, a^†] = I, and σij = |li⟩⟨ lj| represent the 
atomic flip operators.
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To address the final term in the system’s fundamental equation, eq. (1), we propose the 
canonical transformation:

† † †ˆ ˆ ˆ ˆˆ ˆ= cosh sinh , = cosh sinha b b a b bζ ζ ζ ζ− − (3)
where

 	

21 21= tanh2 f

λ
ζ

ω
−
 
  
 

and the operator b^ (b^ †) is annihilation (creation) operator and have the same meaning as the 
operators a^(a^†). Following this substitution of eq. (3) (which likely defines the transformed 
Hamiltonian using the displacement parameter) into the original Hamiltonian, eq. (1), the effect 
of the external classical field becomes effectively merged with the electromagnetic field within 
the Hamiltonian. Under the wave-rotating approximation, which simplifies the time-dependent 
terms in the Hamiltonian, the system transforms into a new form: 
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where the new coupling of the free field takes
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via applying the Heisenberg equation of motion, the physical Hamiltonian (1) can be written:
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where δ1 = Ωf – Δ1, δ2 = Ωf – Δ2, and δ3 = 2Ωf – Δ3, with Δ1 = ω1 – ω2, Δ2 = ω1 – ω3, and  
Δ3 = ω1 – ω4. Using the complete resonance condition (δ1 + δ2 = 0, δ3 = 0) we can obtain the time 
evolution operator U^(t) = exp(–iH^

intt):

	

2† 2 2† 2† 2† 2† 2† 2†1

1 1
2 2† 2 2 2†

2 2 2† 2†1 1 1 1
2

1 1 11
22† 2 2 2†

2 21 1 1
2

1 1 11

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ1
2 2

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ1
2 2 22ˆ ( ) =

ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆˆ ˆ 1
2 2 22

b Ab b A ib B b A ib B b Ab

i b b b bAb iBb A B A Ab iBb
U t

b b b b iAb iBb A A B

δδ
λ λ

δ µ δ δ
λ λ λλ

δ µ δδ
λ λ λλ

−
+ − −

+
− − + −

− −+
− + + 2† 2†

2 2 2 2 2 2 2 2†1 1

1 1

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ 1
2 2

Ab iBb

b Ab b A ib B b A ib B b Abδ δ
λ λ

 
 
 
 
 
 
 
 − 
 

− 
− − + 

 



Khalil, E. M., et al.: External Field-Induced Squeezing in a Four-Level ... 
4858	 THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 4855-4865

where
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The method of computation now necessitates the determination of appropriate initial 
conditions for the operator b^ . Since the problem commenced with the operator a^ and transi-
tioned to b^  through a canonical transformation, we leverage the established relationship be-
tween them to ascertain a suitable initial state for the system. As observed, the coherent state 
|Z ⟩ represents the initial state corresponding to the new operator b^ . However, it is crucial to 
establish the connection between this state and the physical operator a^pertaining to the initial 
coherent state, denoted by |α ⟩ = exp(αa^† – α*a^)|0⟩ (where |0⟩ represents the vacuum state). In 
this context, we aim to identify the relationship between these two coherent states. Utilizing  
eq. (3) (which likely defines the transformed operator), a straightforward derivation yields:

= cosh sinhα ζ α ζ∗+Z (7)
where the operator a^’s eigenvalue with regard to the coherent state |α ⟩ is α. This equation shows 
that, in comparison the initial coherent state |α ⟩ for the original operator a^, the coherent state 
|Z ⟩ for the modified operator b^  corresponds to a compressed coherent state. The previously de-
fined displacement parameter ζ determines the squeezing parameter. After some computations, 
we discover:
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where Hn(z) is the Hermite polynomial of order n. For real α, we note that β = αexp(ζ) and it 
increases by increasing the parameter λ2 as can be seen from the definition of ζ. 

However, the initial atomic state is regulated in superpositio state:
4 4
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=1 =1

(0) = , where = 1a i i i
i i

c l cψ ∑ ∑ (9)

Thus, through our discussion, the initial wave-vector of the field is in a squeezed state 
|Z ⟩, while the atomic state exhibits one of the following three scenarios. In the first scenario, 
we consider the atomic system to be in the ex-cited state |l4 ⟩. Consequently, the initial state of 
the atom-field system:

	 1 4(0) = lψ ⊗ Z

In the second scenario, the initial atomic state is in a superposition state
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Hence, the initial state of the total system in this case:
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In the third scenario, the atomic system is in a superposition state:
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Therefore the initial state in this case:

	
3 4 3 2

1| (0) = (| | | ) |
3

l l lψ 〉 〉+ 〉+ 〉 ⊗ 〉Z

The temporal wave-vector of the system using the initial states (8) and (9), and the 
evolution operator U^(t) (2) can be written:

ˆ( ) = ( ) aA F
t U tψ ψ

−
⊗ ⊗ Z (10)

Tracing out the field will yield the reduced density operator of the atomic system, and 
tracing out the atomic system will yield the reduced density operator of the field system. The 
operator for lower density is provided:

( ) ( )ˆ ( ) = | ( ) ( )A F F A A FA Ft Tr t tρ ψ ψ−−
   (11)

Hereinafter, we will employ the temporal wave-vector (10) to discuss the evolution of 
atomic inversion, Shannon-information entropy and relative entropy of coherence. Moreover, 
we will investigate the phase space of the field subsystem by utilizing the Husimi Q-func-
tion. Through our discussion, we will assume that the intensity of coherent state α = 5, and 
Δ1 = Δ2 = Δ3 = Δ.

Atomic inversion and Shannon-entropy

This section discusses the effect of external field on the atomic population inversion 
and its relation with Shannon-information entropy. For the population inversion, we will use 
the reduced density operator of the atomic system ρ^ 

A(t). The population inversion gives the 
general behaviour about the collapse and revival phenomenon of the atom field interaction. It 
is expressed for our system:

11 33 22 44( ) = ( )W t e e e e+ − + (12)
where ei = A–F ⟨ψ(t)|σii |ψ(t)⟩A-F.

On the other hand, in the context of synthesizing probability distributions, Shan-
non-information is introduced as a concept aimed at addressing the efficient coding of a set of 
quantum states. It provides a framework within the domain of probability distribution quantify 
the amount of information carried by a signal or a set of quantum states. Shannon-entropy is 
defined [28]:

2
=1

1( ) = ( ) ln ( )
ln

H
n

S t t t
α

∞

− ∑P P (13)

where P(t) = ⟨n|ρ̂F(t)|n⟩, and α is the intensity of initial state.
Figure 1 depicts the temporal evolution of both atomic population inversion and Shan-

non-entropy under the influence of the classical field and detuning. The red curve represents the 
population inversion, while the blue curve corresponds to Shannon-entropy.

First row: The atomic system is initially prepared in an ex-cited state |ψ1⟩ with varying 
values of Δ, λ2. In fig. 1(a) (Δ = 0, λ2 –~ 0), the system exhibits well-defined periodic revivals and 
collapses with a period of λ2t = 2nπ, n = 0, 1, 2, ... . This phenomenon arises due to the inherent 
periodicity of the atom-field interaction, leading to a periodic rephasing of the quantum states. 
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Notably, despite the presence of collapse, the population inversion does not reach zero. This in-
dicates the persistence of coherence or the possible achievement of a stable superposition state. 
However, the population inversion approaches zero as time progresses, demonstrating behavior 
similar to the two-photon Jaynes-Cummings model [13]. Furthermore, Shannon-entropy exhib-
its periodic oscillations around unity, suggesting that the system retains sufficient information 
for self-description, indicating a mixed state. As depicted in fig. 1(b), increasing λ2 = 0.49 leads 
to a significant increase in the revival period. This signifies an enhanced rate of transitions 
between energy levels while maintaining the same periodicity observed in fig. 1(a). Converse-
ly, Shannon-entropy decreases with increasing λ2, but exhibits a more pronounced oscillatory 
behavior. The inclusion of Δ = 50 and classical field λ2 = 0.4, as shown in fig. 1(c), results in 
a positive atomic population inversion, indicating an approach towards the ex-cited state of 
the atomic system. The population inversion oscillations almost display the Jaynes-Cummings 
model’s behaviour. Interestingly, Shannon-entropy exhibits a decrease with increasing Δ, ac-
companied by an increase in the amplitude and randomness of its oscillations.

Second row in fig. 1: Assuming the initial state of the atomic system is |ψ2⟩, we ob-
serve a general tendency for W(t) to converge towards the zero line or even completely coincide 
with it, depending on the specific values of the external classical field and detuning param-
eter. In the absence of detuning (resonance condition), W(t) exhibits a convergence towards 
zero irrespective of the presence or absence of the external field. Notably, the revival periods 
are significantly shorter compared to the case with an initial state of |ψ1⟩. This phenomenon 
can be attributed to the superposition state occupied by the atom, residing simultaneously in 
both the ex-cited and ground states, resulting in a minimal population inversion. Additionally, 
Shannon-entropy demonstrates periodic fluctuations around unity, signifying a persistent state 
of high information content (chaos) that necessitates coherence for interpretation. However, 
under detuning conditions (non-resonance), W(t) coincides with the zero line during collapse 
periods, while revival periods exhibit markedly diminished amplitudes. Furthermore, SH(t) dis-

Figure 1. The evolution of atomic inversion curve – 1 and information Shannon-entropy as 
a function of scaled time λ1t with α = 5; the upper row: |ψ(0)⟩ = |ψ1⟩; (a) Δ = 0, λ1 ≃ 0,  
(b) Δ = 0, λ2 = 0.49, and (c) Δ = 50, λ2 = 0.49; the middle row is the same as the upper row but 
|ψ(0)⟩ = |ψ2⟩; the lower row is the same as the upper row but |ψ(0)⟩ = |ψ3⟩
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plays erratic and irregular oscillations, with maximum values lower than those observed under 
resonance conditions. 

Third row in fig. 1: The behaviour of the atomic system is explored when the initial 
state is |ψ3⟩. The revival and collapse periods are similar to the case of |ψ1⟩ under resonance 
conditions, albeit with a reduction in oscillation amplitudes. Intriguingly, the collapse periods 
exhibit negative values. Interestingly, the behaviour of Shannon-entropy closely mirrors that 
of an initially ex-cited atomic state, suggesting that the information encoded within the system 
remains preserved despite variations in atomic population amplitudes. In the non-resonance 
case, the atomic population becomes entirely positive, exhibiting characteristics reminiscent of 
three-level systems under non-resonance conditions [37].

Husimi Q-function

The importance of the Husimi Q-function in quantum information theory and quan-
tum optics is widely recognized. It is defined as the coherent expectation value of the reduced 
field density matrix and depicts the quasi-probability distribution of a quantum state in phase 
space. Thus, we may quantify and characterize squeezing phenomena in quantum systems by 
using the width of the Q-function as a quantitative measure of squeezing. The Q-function is 
provided mathematically [33]:

1 ˆ( , ) = ( )Ft tβ β ρ β
π

 (14)

Figure 2 explores the influence of the initial atomic state (|ψ1⟩, |ψ2⟩, |ψ1⟩), the classical 
field, λ2, and detuning, Δ, on the system’s phase space representation, denoted by the Q-func-
tion, within the complex β -plane, where β = x + iy. We focus on a specific time point (λ1t = 1) 
corresponding to the first collapse period of the atomic inversion. The decision exclude the time 
dependence is motivated by exploring this aspect in prior studies, particularly under conditions 
without an external classical field [38].

In the case of |ψ1⟩, figs. 2(a)-2(c): in the absence of both λ2 and Δ, fig. 2(a), the Q-func-
tion exhibits three concentric circular peaks. The central peak, located at (0, 5), reflects the 
intensity parameter of the initial state α. The two smaller, flanking peaks, positioned approxi-
mately a (–2, ±4, 5), demonstrate sensitivity to changes in system parameters. As λ2 increases , 
fig. 2(b), a squeezing effect is observed for all three peaks, transforming the concentric circles 
into ellipses. This phenomenon signifies that the classical field acts as a squeezing parameter, 
with a more pronounced effect observed at higher λ2 values. Introducing detuning, Δ, fig. 2(c), 
leads to a reduction in the intensity and a shift in the positions of the secondary peaks within 
the β-plane. 

In the case of |ψ2⟩, figs. 2(d)-2(f): fig. 2(d) depicts two main peaks forming concentric 
circles centered at(–2, ±4, 5) for the initial state |ψ2⟩. With increasing λ2, fig. 2(e), these peaks 
undergo squeezing, transforming into ellipses while maintaining their central position. How-
ever, the introduction of Δ, fig. 2(f), results in the reappearance of the main peak observed for 
|ψ1⟩. This suggests that detuning enhances the phase when the atomic system is prepared in a 
superposition state.

In the case ofv |ψ3⟩, figs. 2(g)-2(i): in the absence of λ2 and Δ, fig. 2(g), three peaks 
are observed for the initial state |ψ3⟩. However, the primary peak is approximately located at 
(–2, ±4, 5), with the other two peaks being considerably smaller. Figure 2(h) demonstrate that 
increasing the classical field, λ2, leads to the squeezing of these initially circular peaks. Further-
more, introducing detuning, fig. 2(i), increases the number of contours within the Q-function 
representation and shifts the main peak to a position consistent with figs. 2(c) and 2(f).
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Figure 2. The contour plot of the Husimi Q-function in the complex plan β = x + iy  
with the same parameters as fig. 1 and λ1t = 1

Relative entropy of coherence

To quantify the coherence of a quantum state relative to a known state, one can ex-
amine the relative entropy of coherence. In general, the coherence refers to superposition of 
quantum states. We will employ this measure to quantify the distinguishability between the 
temporal evolution of the atom quantum state ρ^A and the closest diagonal state diag(ρ^A) in terms 
of entropy. The relative entropy of coherence C(t) of the quantum state ρ^A with respect to a ref-
erence state diag(ρ^A) is defined [39]:

[ ]
4 4

=1 =1

ˆ ˆ( ) = diag( ) ( ) = ln lnA A i i ii ii
i i

t S S e eρ ρ η η− −∑ ∑C (15)

where ηi are the eigenvalues of the quantum state ρ^A.
In fig. 3, we will discuss the effect of the initial state of the atomic system, the classi-

cal field, and detuning on the relative coherence C under the same conditions as in fig. 1.
For |ψ1⟩, figs. 3(a)-3(c): the C function exhibits a characteristic evolution. Starting at 

zero, signifying the initial absence of coherence, it undergoes a rapid rise to a value approach-
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ing the maximum attainable value (C –~1.3). It is important to note that the theoretical maximum 
coherence for a four-level atom is C = 1.38. Subsequently, the C function displays a pattern of 
semi-periodic oscillations. Large oscillations occur at specific time intervals (λ1t = nπ, n = 0, 1, 
2, 3,... ) while smaller, damped oscillations appear at intermediate intervals (λ1t = (n + 1)π/2). 
Notably, the C function approaches a state of minimal coherence at these latter time points. 
Increasing λ2 amplifies the coherence oscillations while maintaining their periodicity. However, 
introducing Δ leads to further amplification of the oscillations, albeit with a distinct change in 
their shape. These oscillations appear more random in nature. Despite these fluctuations, the 
overall coherence remains consistent with the phenomenon of atomic inversion.

Figure 3. The dynamical behaviour of relative entropy of coherence C(t)  
with the same parameters as fig. 1

For |ψ2⟩, figs. 3(d)-3(f): in the absence of both λ2 and Δ, fig. 3(d), the C function ex-
hibits periodic oscillations at time intervals of λ1t = nπ/2 for the initial state |ψ2⟩. Notably, the 
minimum value of coherence (C –~ 0.7) represents an improvement in relative coherence com-
pared to |ψ1⟩. Furthermore, increasing scaled time leads to an enhancement of the maximum 
coherence values, reaching the theoretical limit (C = 1.38) at the repetition periods. Similar to 
|ψ1⟩, increasing λ2 amplifies the oscillations. However, the addition of Δ presents a contrasting 
effect. While coherence is amplified overall, the minimum value can reach as low as C = 0.2 
at certain time points. The relative coherence behavior for the initial state |ψ3⟩, figs. 3(g)-3(i), 
resembles the case of |ψ1⟩, figs. 3(a)-3(c), with some key distinctions. The minimum value of C 
is slightly higher (C –~ 0.6) for |ψ3⟩. Additionally, the C function does not start from zero due to 
the initial superposition state of the atom in this case.

Conclusions

 This paper has explored the intricate interplay between a diamond configuration 
four-level atom and a cavity field under the influence of an external classical field. The study 
has examined the collective impact of the initial atomic state, detuning parameter, and external 
classical field on four key characteristics: atomic inversion, quantum Shannon-entropy, Q-func-
tion, and relative entropy of coherence.
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The findings demonstrate a profound influence of the initial atomic state on both 
atomic inversion and Shannon-entropy patterns. Introducing the detuning parameter signifi-
cantly enhanced the observed atomic inversion, particularly for measured or superposition ini-
tial states, driving the system closer to the ex-cited state. However, detuning also resulted in a 
reduction in the maximum achievable values of Shannon-entropy. The presence of an external 
classical field further amplified the oscillations observed in both atomic inversion and informa-
tion entropy.

With regards to the Q-function, the initial atomic state was revealed to exert a signifi-
cant influence on its behavior. The phase space for the measured state was demonstrably larger 
compared to that observed for the superposition initial state. The application of an external 
classical field resulted in the squeezing of the Q-function, with the classical field parameter 
acting as a squeezing factor. This confirms the transformation of the initial coherent state into a 
squeezed coherent state under the influence of this specific type of classical field. Conversely, 
the introduction of the detuning parameter led to a transformation in the Q-function’s shape, 
with an observed increase in the phase space distribution.

Finally, the investigation into the relative entropy of coherence revealed a crucial role 
played by the initial atomic state in either increasing or decreasing its value. The coherence 
of the lower initial measured state was demonstrably lower compared to that observed for the 
initial superposition state. The external classical field also induced a rise in the lower values of 
the relative entropy of coherence. Detuning, however, contributed to an increase in the chaotic 
behavior within the system, leading to a reduction in the maximum achievable values of relative 
entropy of coherence.
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