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In this article, a new lifetime distribution named “inverse Ishita” with one pa-
rameter for modelling lifetime data is presented as a good alternative to known 
one-parameter distributions. Moreover, two types of estimation: point estimation 
and interval estimation are used to estimate the unknown parameter. Furthermore, 
numerical simulation is conducted to evaluate the performance of estimates at 
different parameter values and different sample sizes. Ultimately, to illustrate the 
flexibility and efficiency of the distribution, it was applied to a set of data and com-
pared to the Weibull and Shanker distributions. It was found that the inverse Ishita 
distribution was a better fit for the data than the other distributions. 
Key words: inverse Ishita distribution, maximum likelihood estimator,  

least squares estimator, weighted least squares estimator,  
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Introduction 

In recent years, researchers have shown great interest in one-parameter probability 
distributions to model many types of data in several different fields. Also, researchers study new 
one parameter distributions to find models better goodness of fit for data than the well-known 
distributions. Recently, one parameter distribution called Ishita distribution was proposed by 
[1]. Some of its properties, parameter estimation and applications were discussed. Also, there 
are many generalizations for this distribution see [2-5]. In this article, we will discuss one pa-
rameter distribution proposed by [6] which can be produced by using transformation , called 
inverse Ishita distribution (IID) for modelling lifetime data. Also, the probability density func-
tion (PDF) and cumulative distribution function (CDF) are defined:
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Through the following figs. 1 and 2, we show the behavior for the curves of PDF, CDF 
for IID at several different values of the parameter.

Figure 1. The PDF curves of the IID 
at θ = {0.25, 0.5, 0.75, 1}  

Figure 2. The CDF curves of the IID 
at θ = {0.2, 0.4, 0.6, 0.8}  

Figure 3 shows the hazard rate function 
(HRF) at various parameter values. The gen-
eral objective of this article is to estimate the 
distribution parameter using two types of es-
timation: point estimation and interval estima-
tion. Also, application a set of data to illustrate 
the efficiency and flexibility of the distribu-
tion compared to other lifetime distributions. 
However, for more details about inverse distri-
bution see [7-9]. On the other hand, different 
estimation methods are discussed by [10-12] 
for various distributions. As for the goodness 
of fit tests, Abu-Zinadah and Binkhamis have 
discussed [13]. Further, Abu-Zinadah and Al-
sumairi also studied it for [14]. 

In addition, the HRF for IID is given:
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Maximum likelihood estimation method 

In this section, we estimate the unknown parameter for the IID using: the MLE and 
approximate confidence interval.

Maximum likelihood estimator 

Let x1, x3, ..., x3 be a random sample of size m from IID, then the log-likelihood func-
tion is:
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Figure 3. The HRF curves of the IID 
at θ = {0.25, 0.5, 0.75, 1}  
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Taking the derivative of eq. (4) with respect ϑ, and equating this to zero, we have:
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The MLE of ϑ, say ϑ^MLE can be found by numerically by solving eq. (5) using numer-
ical iteration. 

Approximate confidence interval

When the sample size is large, approximate methods can form confidence intervals. 
such as the maximum likelihood estimator has the property that when the sample size is large 
then:
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where var(ϑ^) = I–1(ϑ^):
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then, the (1 – α)% approximate confidence interval (ACI) for parameter ϑ is obtained:
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where the value of zd/2 is the standard normal value. 

Other estimation methods 

In this section, we provide other estimation methods added to the maximum likeli-
hood estimator introduced and discussed in the previous section and it is least squares, weighted 
least squares and percentiles. 

Least squares estimation method

Suppose that Y1, Y2,..., Ym, are the order statistics of the random sample from any prob-
ability distribution. The mean and the variance of the ith order statistic are given:
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We can get the least squares estimator of parameter ϑ of inverse Ishita by minimizing:
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with respect to ϑ. Differentiating eq. (9) with respect to the parameter ϑ, gives: 
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Then, the LSE of ϑ, say ϑ^LSE can be found numerically by solving eq. (10). 

Weighted least squares estimation method 

We can obtain the estimator for the weighted least squares by minimizing:
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Thus, the weighted least squares estimator for the parameter ϑ of inverse Ishita can be 
found by minimizing:
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with respect to ϑ. Differentiating eq. (11) with respect to the parameter ϑ, gives:
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Thus, the WLSE of ϑ, say ϑ^WLSE cannot be found analytically, then can be found using 
numerical methods. 

Percentiles method

Assume the unknown parameter ϑ of IID can be estimated via the percentile method 
by equating the sample percentile points with the population percentile points. First, when pa-
rameter is unknown. Since:
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Let X(i) is the ith order statistic, X(1) < X(2) < ... < X(m). If pi is the some estimate of  
F[(xi); ϑ], then estimate of ϑ, can be obtained by minimizing:
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with respect to ϑ. Differentiating eq. (15) with respect to the parameter ϑ, gives:
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Then, the PCE of ϑ, say ϑ^PCE can be obtained numerically by solving eq. (16). 
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Bootstrap confidence interval

The bootstrap was published by [15] and is a non-parametric technique that we use 
to estimate variance and find approximate confidence intervals for parameters. Although the 
method is non-parametric, it can be used to make inferences about parameters in parametric 
and non-parametric models, in this paper we discuss the parametric methods. The steps used to 
create confidence intervals bootstrap-p and bootstrap-t are:
– Compute the MLE in eq. (5).
– To obtain the bootstrap sample, we substitute m, ϑ^ in IID eq. and denoted by

x* = {x*
1, x*

2, ..., x*
m}.

– From bootstrap sample compute estimate of bootstrap ϑ^*.
– Repeat Steps 2 and 3 N times we obtain the sample ϑ^*

1, ϑ^*
2, ..., ϑ^*

N.

– The bootstrap estimate is:
*

1

ˆN
i

i N
θ

=
∑ (17)

Percentile bootstrap confidence interval 

To obtain the percentile bootstrap, we arrange the sample ϑ^*
1, ϑ^*

2, ..., ϑ^*
N in ascending 

order ϑ^*
(1) ≤ ϑ^*

(2) ≤ ... ≤ ϑ^*(N). Suppose that the CDF of ordered sample is defined by the following 
distribution Ø(y) = P[ϑ^*

(i) ≤ y]. The approximate (1 – α)% boot-p confidence interval for ϑ is 
calculated:

* *

boot-p boot-p 1
2 2
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where ϑ^*
boot-p = Ø–1(y). 

Bootstrap-t confidence interval 

For arrange the sample in ascending order ϑ^*
1, ϑ^*

2, ..., ϑ^*
N, we built the order statistic Z1, 

Z2, ..., ZN where:
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Suppose that the CDF of ordered sample Z1, Z2, ..., ZN is defined by the following 
distribution Ø(y) = P(Zi ≤ y). The approximate (1 – α)% boot-t confidence interval for ϑ is 
calculated:

* *

boot-t boot-t 1
2 2
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where 

( ) ( )* * 1
boot-t

ˆ ˆ ˆvar yϑ ϑ ϑ −= + ∅ (21)

Numerical simulation 

In this section, a Monte Carlo simulation is studied for different sample sizes to com-
pare different estimators. The simulation is conducted by using Mathematica (V.12.1) and has 
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been repeated N = 10000 times with different sample sizes m = 30, 50, 100 while choosing  
(ϑ = 0.3, 0.5, 0.6). The performance of the resulting estimator of the parameter has been con-
sidered in terms of their absolute relative bias (ARBias) and relative RMSE (RRMSE), where:

( ) ˆˆARBias ϑ ϑϑ
ϑ
−

= (22)

and 

( ) ( )ˆ
ˆ

MSE
RRMSE

ϑ ϑ
ϑ

ϑ

−
= (23)

On other hand, we compare the performance of approximate confidence interval and 
two types of bootstraps using the AIL (average interval length) and CP (coverage probability) 
with nominal value 0.95. Results for the simulation study are given in tabs. 1 and 2, respectively. 

From tabs. 1 and 2 show the results of different estimation methods for a parameter: 
– We need numerical methods to solve the non-linear equations for the different estimators:

MLE, LSE, WLSE, and PCE.
– For the point estimate, the MLE is considered a good among other estimators in terms of

RRMSE, while the WLSE is a best for the parameter in terms of ARBias.
– The ARBias and RRMSE of the estimates8 are decrease when sample size are increases in

almost of time.
– For interval estimate, the ACI is better than PBCI and BTCI for both average interval length

and coverage probability.
As the sample size increases, the average interval length decreases, and coverage 

probability increases to approach the nominal value.

Applications

In this section, we employed two data sets to reveal using the IID as a good lifetime 
model by comparing it with Weibull distribution and Shanker distribution. The parameter is es-
timated by using the maximum likelihood. Mathematica (V.12.1) is used for computation. The 
goodness of fit tests is also used to compare the models:

( ) ( )Akaike information criterion 2 ˆ 2AIC l kϑ= − + (24)

( ) ( ) ( )Bayesian information criterio 2 logˆBIC n l k mϑ= − + (25)

( ) ( ) 2consistent Akaike information criterio  2
1

ˆ kmCAIC n l
m k

ϑ= − +
− −

(26)

( ) ( ) ( )Hannan-Quinn information criterion 2 2  log loˆ gHQIC l k mϑ  = − +   (27)

where l(ϑ^) is the log likelihood function, k – the number of estimated parameters, and m – the 
sample size. About other information for these measures see [16]. The smallest value of these 
measures determines the model that better fits the data. 

Data set 1. These data are survival times for a group of head and neck cancer patients 
treated with two types of radiotherapy and chemotherapy see [17]: 

12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36,63.47, 68.46, 78.26, 
74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130,133, 140, 146, 155, 159, 173, 179, 194, 195, 
209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776. 
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Table 1. The ML estimate, ARBias, RRMSE values of parameter θ 

θ = 0.6θ = 0.5θ = 0.3Methodm

0.6043270.5043960.302774θ
^

MLE

30

0.007211090.008791750.00924745ARBias

0.09764320.1011430.10589RRMSE

0.6024760.5027570.306063θ
^

LSE 0.004126430.005513720.0202108ARBias

0.1051430.1081221.42527RRMSE

0.6023170.5026560.301654θ
^

WLSE 0.003861070.005312180.00551478ARBias

0.1021670.105050.111098RRMSE

0.5731980.4775010.285547θ
^

PCE 0.04466990.04499820.0481752ARBias

0.1221780.1248330.127646RRMSE

0.6029290.5023110.302088θ
^

MLE

50

0.004881550.004622260.00695935ARBias

0.07614080.07798840.0830398RRMSE

0.6019270.5011610.301408θ
^

LSE 0.003211180.002322130.00469188ARBias

0.08174430.08348270.0892386RRMSE

0.6018290.501160.301336θ
^

WLSE 0.003049010.002319760.00445172ARBias

0.07905690.0809030.0864648RRMSE

0.5792340.4825430.289505θ
^

PCE 0.03461010.03491410.0349844ARBias

0.0960750.09837190.100778RRMSE

0.6013820.5008650.300749θ
^

MLE

100

0.002303940.001729470.00249726ARBias

0.05362390.05500820.0571517RRMSE

0.6008170.5004310.300333θ
^

LSE 0.001361730.00086290.00110855ARBias

0.05759070.05920520.061802RRMSE

0.600830.5004620.300361θ
^

WLSE 0.001383930.0009234340.00120308ARBias

0.05564080.05727350.0596702RRMSE

0.586110.4875120.292698θ
^

PCE 0.023150.02497610.0243412ARBias

0.06810270.07036720.0711411RRMSE



Abu-Zinadah, H., et al.: Estimation of Inverse Ishita Distribution with Application ... 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 4843-4853	 4851

Table 2. The ACI, PBCI, and BTCI for parameter θ 

N θ
Average interval length Coverage probability

ACI PBCI BTCI ACI PBCI BTCI

30

0.3 0.1184 0.1189 0.1253 66.0648 66.7506 66.4073
0.5 0.1992 0.1974 0.2039 67.2368 68.1664 68.1257
0.6 0.2222 0.2222 0.2293 67.8577 68.4345 68.3637

50

0.3 0.084 0.084 0.0864  72.6117  72.973  72.8728
0.5 0.1652 0.1631 0.1659 74.0496 74.6464 74.664
0.6 0.1876 0.1882 0.191 74.6623 74.9067 74.9442

100

0.3 0.066 0.0662 0.0673 79.8719 79.9819 79.8984
0.5 0.1052 0.1055 0.1065 80.6119 80.6847 80.696
0.6 0.1224 0.1252 0.1265 81.0233 80.7533 80.74

Table 3 displays the values of MLE, measures AIC, BIC, CAIC and HQIC for inverse 
Ishita, Weibull and Shanker distributions. Figiure 4 shows the curves of empirical distribution 
and estimated CDF of inverse Ishita, Weibull and Shanker distributions. The results of MLE 
and confidence intervals are in tab. 4. 

Table 3. The values for ML estimates and goodness of fit measures of data Set 1

StatisticsML estimates
Model

CAICHQICBICAICβ
^

θ
^

561.25561.816562.939561.155–76.7013Inverse Ishita
567.976569.007571.252567.6830.94088216.116Weibull
642.597643.163644.285642.501–0.00894963Shanker

Table 4. The MLE and 95%confidence interval of the parameter
θ
^

76.7013 ACI (54.0384, 99.3642)
θ
^
LSE 82.5569 PBCI (58.6436, 104.765)

θ
^
WLSE 80.18 BTCI (62.8953, 115.034)
θ
^
PCE 63.465-

θ
^
Boot 78.4675

Data set 2. These data represent the 
lengths of time it takes for 20 different compo-
nents to fail. and its values are [18]:

70.175, 8.851, 2.968, 9.763, 57.637, 
57.337, 9.773,48.442, 6.662, 37.386, 79.333, 
85.283, 8.608, 6.56, 54.145, 4.229, 7.11, 
10.578, 30.112, 19.136. 

Table 5 displays the values of MLE, mea-
sures AIC, BIC, CAIC, and HQIC for inverse 
Ishita, Weibull-Shanker distributions. Figure 5 
shows the curves of empirical distribution and 
estimated CDF of inverse Ishita, Weibull-Shan-
ker distributions. The results of MLE and con-
fidence intervals are in tab. 6. 

Figure 4. Empirical distribution and estimated 
CDF for the data of survival times for patients 
with head and neck cancer
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Table 5. The values for ML estimates and goodness of fit measures of data Set 2
StatisticsML estimates

Model
CAICHQICBICAICβ

^
θ
^

179.399179.371180.172179.176–11.333Inverse Ishita
181.52181.203182.806180.8151.075431.6069Weibull
211.219211.191211.993210.997–0.065185Shanker

Table 6. The MLE and 95% confidence interval of the parameter
θ
^

11.333 ACI (6.4002, 16.2658)
θ
^
LSE 10.9317 PBCI (7.6836, 18.2708)

θ
^
WLSE 10.713 BTCI (8.8974, 22.5766)
θ
^
PCE 9.9449

θ
^
Boot 11.8851

Conclusion

In this article, we adopted IID. As one of new one parameter distribution for model-
ling lifetime data with scarce information. As well, two types of estimation were used: point 
estimation and interval estimation estimate the unknown parameter. Finally, a set of data is 
applied to assess the efficiency of the distribution compared with specific models. According 
to the results, the IID shows a better fit for all the data instead of the known distributions we 
cared about it here. 
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