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The coaxial microtubes, which can be transparent, flexible, and 

biocompatible, are often part of micro-electro-mechanical systems. This 

paper examines the steady, subsonic rarefied gas flow through an 

axisymmetric microtube with an annular cross-section, induced by pressure 

difference. The flow is considered compressible and non-isothermal, with 

constant inner and outer wall temperatures. The study uses continuum 

approach based on continuity, momentum and energy equations together 

with slip and temperature jump boundary conditions. The perturbation 

method is used and enables including effects of inertia, convection and 

expansion work. Hence, analytical solutions for velocity, pressure and 

temperature are obtained, which allows analysis of all named effects along 

with annular microtube geometry. These results provide optimizing 

microtube designs in practical applications. Regarding solutions are 

analytical, they can be useful as a criterion for validating the accuracy and 

reliability of numerical solutions of similar problems.    

Keywords: rarefied gas, slip flow, temperature jump, compressible, 

incompressible, annular microtube 

1.   Introduction 

 With the rapid development of microdevices across industries [1]-[3], understanding heat transfer 

in microelements is crucial. Micro-heat exchangers are widely used, including in medicine, for 

cryosurgical probes treating tumors and cardiac arrhythmias. For instance, the Joule-Thomson 

cryogenic refrigerator, integral to cryosurgical probes, features microtube diameters ranging from tens 

to hundreds of microns. These devices offer simplicity and compactness, enhancing their applicability 

[4]. 

Micro-annuli are key micro-geometries in micro-fluidic systems, applicable from basic heat 

exchangers to complex nuclear reactors [5]. Coaxial tube configuration is present in variuos 

technological applications including pressure measuring in vacuum gadgets [6], multilayer insulation 

blankets used in micro heat exchangers, cryogenic systems and space vehicles [7]. Consequently, 

understanding non-isothermal gas flow in annular microtubes under various temperatures is crucial for 

many devices, necessitating a thorough understanding of flow characteristics. 

Corresponding works with non-isothermal coaxial microtubes are limited. These problems are 

mostly investigated numerically. Maharjan et al. [8], Pantazis et al. [9] and Sharipov and Bertoldo [10] 

explored heat transfer in the axial flow of rarefied gas between coaxial cylinders maintained at 
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different temperatures. Maharjan et al. [8] based research on the S-model kinetic equation, DSMC 

technique and CFD with Lin and Willis boundary condition [8], while Pantazis et al. [9] employed 

kinetic S-model with Cercignani-Lampis boundary condition. Aoki et al. investigated rarefied gas flow 

between coaxial elliptical cylinders with different uniform temperatures on the basis of kinetic theory 

[11]. Char and Tai [12] examined laminar incompressible rarefied gas flow in a micro-annulus with 

constant wall temperatures. 

Several researchers obtained analytical results for the flow of rarefied gas through microtubes. 

Weng and Chen [13] analyzed natural convection in vertical annular microtube gas flow with constant 

inner wall temperature. Shamshiri et al. [14] modeled transport mechanisms in rarefied gas flow in the 

slip regime between a shaft and its cylindrical housing, using incompressible Navier-Stokes-Fourier 

equations. Duan and Muzychka [15] studied heat transfer in rarefied incompressible gas flow through 

an annular microtube, considering cases with both walls conducting heat and one wall being 

adiabatically insulated. Barbera and Brini [16] explored steady-state heat transfer between two coaxial 

cylinders at different temperatures by 13 moment equations, where the inner cylinder moves in the 

axial direction. 

None of the introduced literature, to the authors’ knowledge, has dealt with the pressure driven 

compressible rarefied gas flows in annular microtubes, with constant and equal wall temperatures. 

Therefore, this paper examines rarefied pressure driven non-isothermal steady compressible subsonic 

gas flow through an axisymmetric annular microtube. Besides, the contribution of the solution 

presented in this paper is in analytical approach. Obtained analytical solutions are easily applicable, 

repeatable and can serve as a reference for numerical solutions of similar problems. 

 

2. Problem description and governing equations 

 The annular microtube has a constant cross-section (fig. 1). The temperatures of the inner and 

outer walls are constant, equal to each other, and denoted by  ̃  (dimensional quantities are indicated 

with tilde).  

Figure 1: Annular microtube geometry. 

   For the stationary axisymmetric compressible non-isothermal flow the system of equations 

comprises of the continuity equation, the momentum equations in the axial and radial directions, the 

energy equation in the differential form [17]. When studying compressible gas flow, the equations 

must incorporate an equation of state for an ideal gas [17]. 

Maxwell developed the slip boundary condition for velocity using kinetic theory of monatomic 

gases [18]:  
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 The boundary condition for the temperature field, was derived by Smoluchowski [19], also using 

the kinetic theory of gases. For flows in tubes, Smoluchowski boundary condition can be written as:  
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     (2) 

3. Solution procedure 

 To convert dimensional equations into dimensionless form, it is necessary to introduce 

appropriate reference quantities. As the values of the Knudsen and Mach numbers increase from the 

inlet to the outlet of the tube, choosing the outlet cross-section as the reference ensures that the entire 

tube will have a subsonic flow regime under slip conditions, if that condition is met at the outlet. The 

dimensionless quantities are:  
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 According to the molecular model of hard spheres, the dimensionless thermal conductivity   and 

dynamic viscosity   follow       . The solutions are based on the following flow conditions 

assumptions:   

- the reference diameter of the tube is much smaller than the length of the tube, so it is possible to 

introduce a small parameter    ( ̃   ̃ )  ̃    ;  

- due to the constant cross-section of the annular microtube, it is assumed that the radial velocity 

component is much smaller than the longitudinal component  ̃    ̃  ̃   ( );  

- for subsonic flow with slip, the values of the reference Mach and reference Knudsen numbers 

are small and can it be assumed     
         ( )     and           

 ( )    ;  

- the subsonic condition also permits the assumption regarding the order of magnitude of the ratio 

of the square of the reference Mach number to the reference Reynolds number     
      

      ( ).  

 The reference Mach, Knudsen, Reynolds and Prandtl numbers are defined as follows:  
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 From the definition of reference Mach, Reynolds and Knudsen number, eq. (3), the relation 

between them is:  

     √
  

 

   

   
  (4) 

 From assumptions about Mach number follows the connection between the Reynolds number 

and the small parameter  :  

              (5) 

where the positive exponent value for the small parameter   (   ) indicates low Reynolds number 

flow, while negative exponents (   ) correspond to high Reynolds numbers. The relationship 

between parameters  ,  , and   is derived from assumptions regarding Mach, Knudsen, Reynolds 

numbers and eq. (4), eq. (5):          . Also, the parameters   and   are not independent. The 

dependence between them follows from the assumptions and the expression (4):  

         (6) 
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 With the already stated     and    , from the relation (6), the domain of these parameters 

is   (   ) and   (   ). For flows at low Reynolds numbers (     )    , the domain of 

parameters is:  

                    (7) 

 For flows at moderately high Reynolds numbers (       ), when     , the parameters   

and   are:  

                    (8) 

 The continuity equation, momentum equations for the axial and radial directions and energy 

equation are transformed into dimensionless form:  
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The pressure does not depend on the radial coordinate  , eq. (11). Considering that the flow is 

axisymmetric, it is concluded that the pressure depends only on the longitudinal coordinate  , so 

              . The dimensionless form of the equation of state of an ideal gas should be added 

to the dimensionless system of equations (9)-(12):  

       (13) 

From the boundary condition for velocity in the dimensional form, expression (1), it follows that 

dimensionless boundary condition for the inner and outer walls of the tube is:  
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Starting from the dimensional form of Smoluchowski boundary condition eq. (2), the dimensionless 

form for the inner and outer walls of the microtube is:  
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To solve the system of equations (9)-(13) with boundary conditions (14), (15) the perturbation 

approach is applied. All quantities are expressed in the form of a perturbation series, with two 

approximations each             (   
 ). With the intention that all effects occur in the second 

approximation, from expressions (10), (12), (6) it follows for the parameters   and   it is only 

possible        . Therefore, from the equation (8) this case corresponds to moderately high 

Reynolds numbers. 

By incorporating all quantities, whose solution needs to be achieved, in the form of a perturbation 

series, into the system of equations in dimensionless form, two systems are obtained:  
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Solutions are obtained for the known mass flow rate value, which is included in the first 

approximation:  ̇       ,   ̇   . The solution process begins with the energy equation for the 

first approximation (18) and the boundary conditions for gas temperature on the inner and outer walls 

eq. (20), providing the first approximation of temperature. Next, the momentum equation in the   

direction is solved for the first approximation (17) with velocity boundary conditions eq. (19). Then 

pressure field for the first approximation is determined using the integral form of the continuity 

equation (16), with boundary condition for pressure at the outlet cross-section          (the 

pressure is fully contained in the first approximation). The same procedure applies to the second 

approximation. The temperature is obtained from the energy equation (23) and the corresponding 

boundary condition (25), after that the velocity from the momentum equation (22) and velocity 

boundary condition (24). Finally, the second approximation for the pressure is obtained based on the 

integral form of the continuity equation (21), where boundary condition for pressure at the exit is 

        . 

In view of this, the solutions for the velocity and temperature fields follow:  

  

             
   

 
  ( )  

   

 
{     ( )  

    

  

   

  
  ( )   

        
    [        (  

  

  
)
 
]
  

[        ( )  

     
   (                                                                     ) (    

  

  
)
  

  ( )]}                                                                         

(26) 

 

                  
    

   
   

    
   

   ( )  (27) 

where functions   ( ),   ( ),   ( ),   ( ),   ( ) are given in Appendix. 

The pressure field is considered for both compressible flow and when compressibility is 

neglected. 

3.1.  The solutions for compressible gas flow 

 Using the obtained temperature solution eq. (27) and the ideal gas equation of state (13), the 

density in the first and second approximations is       and           . Including the density 

value into the integral form of the continuity equation (16), (21), the pressure solution for 

compressible non-isothermal flow of rarefied gas through an annular microtube at moderately high 

Reynolds numbers is obtained:  
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where pressure in the first approximation is    √     (   )   and constants   ,   ,   ,    are 

stated in Appendix. 

Based on the general solution for the velocity eq. (26), temperature eq. (27) and the obtained 

pressure field for compressible flow eq. (28), the velocity and temperature for compressible non-

isothermal flow at moderately high Reynolds numbers are:  
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3.2. The solutions for incompressible gas flow 

 As results in the literature are given for incompressible flow, solutions were also obtained for the 

case when compressibility is neglected. For constant density, the density is contained in the first 

approximation:     ,     . The assumption of neglected compressibility can be confirmed by 

small values of the Mach number. Involving density values in the continuity equations in integral form 

(16), (21), the pressure for non-isothermal flow of rarefied gas through an annular microtube at 

moderately high Reynolds numbers, when compressibility is neglected is:  
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where pressure in the first approximation is         (   )   and constants   ,   ,   ,    are 

stated in Appendix. 

From the solutions for velocity eq. (26), temperature eq. (27) and pressure eq. (31) follows the 

temperature and velocity for incompressible non-isothermal flow at moderately high Reynolds 

numbers:  
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4. Results 

 Fig. 2 and fig. 3 show pressure distribution along the microtube and the results for velocity and 

temperature in three cross-sections. Two gap geometries were chosen to display the results:       

  and          . The accommodation coefficient for diffuse reflection      and ideal energy 

exchange between the gas and the wall      was used, both for the inner and outer walls. In order to 

compare with the results from the literature, obtained for a diatomic gas, the Prantl number        

and the heat capacity ratio       were chosen. 
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a)                                                       b)                                                      c) 

 

Figure  2: Results for compressible flow: a) pressure for continuum (     ) and slip 

(    0.1) eq. (28); b) velocity for continuum (Kn_r=0) and slip (Kn_r=0.1) eq. (29); c) 

temperature for continuum (Kn_r=0) and slip (Kn_r=0.1) eq. (30). 

Fig. 2 shows the results for compressible flow. Fig. 2 a) shows that rarefaction decreases pressure 

compared to the case when rarefaction is neglected, at the same mass flow rate. Increasing ratio       

leads to the lower pressure along the microtube. Fig. 2 b) shows velocity profiles at three cross-

sections. The slip effect on the microtube walls increases from inlet to outlet of the tube. A higher 

outer-to-inner radius ratio increases velocity profile asymmetry, especially at the outlet. The influence 

of the       ratio on the velocity field for non-isothermal compressible flow in an annular microtube 

is consistent with findings of Taheri and Struchtrup [20] and Taheri et al. [21]. Although non-

isothermality exists, for compressible flow at high Reynolds numbers, in the continuum case the 

temperature profile is constant (fig. 2 c)). The gas temperature at the wall is equal to the wall 

temperature along the tube, indicating the temperature jump boundary condition did not come to the 

fore. Increasing the outer-to-inner radius ratio causes greater asymmetry in the temperature profile.   

   a)                                                       b)                                                      c) 

Figure  3: Results for incompressible flow: a) pressure for continuum (     ) and slip 

(       ) eq. (31), b) velocity for continuum (     ) and slip (       ) eq. (32); c) 

temperature for continuum (     ) and slip (       ) eq. (33). 

   

Fig. 3 shows the results for incompressible flow at high Reynolds numbers. For incompressible 

flow in the continuum case, pressure distribution is linear, but rarefaction lowers pressure along the 

tube (fig. 3 a)), similar as in [22] and [23]. Increasing the       ratio pressure decreases, as for 

compressible flow, especially at higher Knudsen numbers (       ). In non-isothermal flow at 

moderately high Reynolds numbers without considering compressibility, the velocity profile remains 

unchanged along the microtube in the continuum case (fig. 3 b)). This is due to the linear pressure 
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distribution in the longitudinal direction. However, considering rarefaction, inertia, convection, 

expansion work, and viscosity, the velocity profile decreases from the inlet to the outlet of the pipe in 

the area at half the distance between the inner and outer cylinder of the tube. Conversely, on the walls, 

slip velocity increases from entrance to exit. Fig. 3 b) also demonstrates the impact of the       ratio 

on the velocity field, increasing asymmetry notably at the exit cross-section. This influence mirrors 

that of compressible flow, as in Taheri and Strachtrap [20] and Taheri et al. [21]. Fig. 3 b) also shows 

a comparison with the results of Char and Tai [12] and it shows good agreement for the same flow 

conditions. Fig. 3 c) shows the temperature profile for incompressible flow at high Reynolds numbers. 

In the continuum case, the temperature is constant, but it varies across the cross-section when 

rarefaction is considered. Since the density is assumed to be constant, there’s no temperature change 

along the tube. The temperature jump boundary condition, as for compressible flow, did not come to 

the fore. Increasing the       ratio lowers the temperature and increases profile asymmetry, similar to 

the compressible flow case. 

 

5. Conclusion 

The increasing prevalence and wide application of micro-electro-mechanical systems, which 

frequently utilize microtubes, motivates the study of rarefied gas flow. Hence, exploring gas flow in 

microtubes with various geometries and temperature conditions is highly significant. 

This study examines the compressible non-isothermal steady subsonic rarefied gas flow through 

an axisymmetric microtube with an annular cross-section, driven by a pressure difference between the 

tube’s inlet and outlet. The analysis includes the continuity, momentum and energy equations, with 

velocity slip and temperature jump boundary conditions. Solutions are derived using a perturbation 

approach. Using the perturbation method, all quantities are shown with two approximations of the 

perturbation series. Two approximations include elements of the order of unity and the order of 

Knudsen’s number. The boundary condition of the temperature jump did not come to the fore in the 

first two approximations of the perturbation series. That is, this effect is smaller than the effects 

covered by the obtained solution, so the importance of this solution is not diminished. 

The increase of outer-to-inner radius ratio causes greater asymmetry of temperature and velocity 

profile along the microtube. These findings align with existing literature on rarefied gas flows, which 

confirms accuracy of the solution. Obtained results enhancing understanding of heat transfer in micro-

fluidic systems. 
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Nomenclature  

     mark above the letter for dimensional sizes 

without          mark for dimensionless quantities 
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    temperature-viscosity parameter [-] 

 ,  ,  ,  ,     parameter [-] 

     specific heat capacity at constant pressure [        ] 

    small parameter [-] 

    thermal conductivity of gas [       ] 

    the ratio of specific heat capacities [-] 

     Knudsen number [-] 

    the length of the free path of the molecule [m] 

    microtube length [m] 

 ̇   mass flow [     ] 

     Mach number [-] 

    dynamic gas viscosity [Pas] 

    kinematic gas viscosity [m
2
s] 

    pressure [Pa] 

     Prandtl number [-] 

 ,  ,     coordinates of the cylindrical coordinate system 

     inner microtube radius [m] 

     outer microtube radius [m] 

     Reynolds number [-] 

    gas density [     ] 

     thermal accommodation coefficient [-] 

     accommodation coefficient of the momentum vector [-] 

    temperature [K] 

    component of the velocity in the longitudinal direction [    ] 

 ,     radial velocity component [    ]  

subscript     inlet cross-section 

subscript     outlet cross-section 

subscript     reference cross-section 

subscript     wall 

subscript  ,     first and second approximation  
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