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Multiple sclerosis impacts the central nervous system, causing symptoms like fa-
tigue, pain, and motor impairments. Diagnosing multiple sclerosis often requires 
complex tests, and MRI analysis is critical for accuracy. Machine learning has 
emerged as a key tool in neurological disease diagnosis. This paper introduces 
the multiple sclerosis diagnosis network (MSDNet), a stacked ensemble of deep 
learning classifiers for multiple sclerosis detection. The MSDNet uses min-max 
normalization, the artificial hummingbird algorithm for feature selection, and a 
combination of LSTM, DNN, and CNN models. Hyperparameters are optimized 
using the enhanced walrus optimization algorithm. Experimental results show 
MSDNet's superior performance compared to recent methods.
Key words: chronic neurodegenerative disorder, advanced machine learning, 
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Introduction

Multiple sclerosis (MS) is a chronic disorder affecting the central nervous system 
(CNS) through neurodegeneration and inflammation, leading to symptoms like blurred vision, 
muscle weakness, and fatigue [1]. It is characterized by the formation of lesions or plaques in 
the white matter of the CNS, which disrupt neural communication [2]. The MS is classified 
into types such as relapsing-remitting MS (RRMS) and primary progressive MS (PPMS), with 
RRMS being the most common, involving periods of relapse followed by remission [3]. Di-
agnosing MS remains a complex process, often involving MRI scans to detect brain lesions, 
however, manual lesion identification can be time-consuming and prone to human error [4, 5]. 
As a result, there is an increasing interest in automating MS diagnosis using AI, particularly 
through machine learning (ML) and deep learning (DL) techniques, which can efficiently ana-
lyze medical imaging data and reduce diagnostic errors [6-10].

Recent advancements have demonstrated the potential of AI in enhancing MS diag-
nosis. Yaghoubi et al. [11] introduced a novel method using scanning laser ophthalmoscopy 
images to detect retinal vessel abnormalities, offering a non-MRI-based approach to identifying 
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vascular biomarkers associated with MS. Mohammed et al. [12] leveraged DL, particularly 
convolutional neural networks (CNN), to improve the speed and accuracy of MS diagnosis 
through MRI data analysis. Their work highlighted CNNs’ ability to capture complex patterns 
in medical images, which is essential for early detection of MS lesions. Langat et al. [13] 
advanced this concept further by integrating 6G-enabled Internet of Medical Things technolo-
gy with DenseNets, showing significant improvements in diagnostic accuracy, particularly in 
cases of acute transverse myelitis. Langat et al. [14] focused on refining lesion segmentation 
using the MSAT algorithm and HDCARAN classifier, demonstrating enhanced precision in 
MRI analysis, while Ponce de Leon-Sanchez et al. [15] explored various DL architectures, 
including LSTM-CNN and GAN, to understand their applications across different neurological 
diseases. Moreover, Al Jannat et al. [16] employed an ANN model to predict MS diagnosis, 
achieving high accuracy by selecting relevant features from gene expression profiles. This un-
derscores the growing role of genetic data in augmenting neuroimaging techniques. Rode and 
Soddamallaiah [17] developed a CNN-based system that utilized transfer learning and softMax 
for classifying MS progression, successfully dealing with the challenge of sparse lesion data. 
Finally, Kappal [18] proposed the PAFEM-IS feature extraction method to optimize MS lesion 
segmentation, further demonstrating the power of AI-based solutions in minimizing diagnostic 
errors and reducing time consumption in clinical settings. These approaches reflect the ongoing 
shift towards automated and more reliable MS diagnosis through AI technologies.

This study builds on these advancements by proposing the MSDNet, a framework that 
employs min-max normalization standardize data, the artificial hummingbird algorithm (AHA) 
for feature selection, and a stacked ensemble of DL models (LSTM, DNN, CNN) for MS di-
agnosis. The integration of multiple DL models in a stacked configuration aims to maximize 
diagnostic accuracy by capturing diverse data features. Hyperparameter tuning is further opti-
mized using the enhanced walrus optimization algorithm (EWOA), which fine-tunes the per-
formance of the ensemble models. Experimental results indicate that the MSDNet framework 

outperforms recent approaches, offering a more 
robust and accurate method for MS diagnosis 
under various testing conditions.

Proposed methodology

This study presents the MSDNet model 
for diagnosing MS, which involves data nor-
malization, feature selection, a stacked ensem-
ble of DL classifiers, and hyperparameter tun-
ing. The workflow is depicted in fig. 1.

Feature Selection Process

The MSDNet technique starts with min-
max normalization, standardizing data to a 
range of 0 to 1, which is vital in MS analysis 
[19]. This ensures all features, like MRI read-
ings and clinical scores, are treated equally, 
preventing bias. This normalization enhances 
ML’s ability to differentiate between healthy 
individuals and those with MS, improving di-
agnostic accuracy and effectively managing Figure 1. The MSDNet architecture flow
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diverse data types in MS diagnosis. Additionally, the feature selection process uses the AHA 
to identify the optimal subset of features. This algorithm mimics a hummingbird’s behavior of 
exploring various food sources, with each hummingbird retaining memories of encountered 
sources, and consolidating data from multiple sources to determine the best features [20]. 

Initialize

The process begins by placing mmm hummingbirds on mmm food sources:
( ) , 1,  ,rc Low i Up Low r m= + − = … (1)

where the d‐dimensional upper and lower bounds are denoted by Up and Low. A randomly 
generated vector in the interval [0, 1] was designated by i, and the provided issue’s solution rth 
food resource’s position is represented by cr.

Guided foraging: Hummingbirds possess the remarkable ability to locate food sources 
that contain substantial amounts of liquid. In the AHA methodology, three key abilities – axial, 
omnidirectional, and sloping – are utilized during the foraging process, with a route-switching 
trajectory designed for effective navigation.

The axial fight in the w – W space was provided:
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The explanation of the omnidirectional fight is assumed:
( ) 1,  1,  ,   rW r w= = … (4)

where from 1 to w a random number is created by randi([1, w]) from 1 to p an uneven transfor-
mation of numbers is produced by randperm(p), and a randomly produced value in the range of 
[0, 1] is i1. The numerical calculation of foraging is shown:

( ) ( ) ( ) ( )( ), ,1r r tar r r tarE g c S zW c g c g= + = + − (5)

( )0,1z M∼ (6)
At time g, the position of rth food resource is denoted by c(g), the portion of the rth 

hummingbird reflects to stay was specified by cr,tar(g), and the guided factor that experiences 
normal distribution M(0, 1) is a. The rth food resource's position upgrade is expressed:

( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1
1

1 1

r r r
r

r r r

c u c g u e g
c g

e g u c g u e g
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(7)

where the value of function fitness is indicated by u.
Territorial foraging: When a depleted food source is completely consumed, the hum-

mingbird will seek a new source within its vicinity. The mathematical formulation for this local 
search process:
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( ) ( ) ( )1r r Ce g c g yW g+ = + (8)

( )0,1  y M∼ (9)
In this context, the territorial factor follows a standard normal distribution M(0,1)

M(0,1)M(0,1) represented as yyy. The movement from one location another, particularly to-
wards the area with the least nectar replenishment, can be expressed:

( ) ( )worst 1  C S LOW i UP LOW+ = + − (10)
where Cworst is the supply of food with the poorest nectar replacement rate in the population. As-
suming a 50% likelihood for both regional and guided foraging strategies, the guided foraging 
method has an equal probability of remaining at various resources. At this point, the migration 
strategy needs to be implemented to enhance efficiency and identify suitable hunting grounds:

2N m= (11)
The computational intricacy is related to initialization, the health assessment (xeval), 

the hummingbird size of population (Nsize), the most iterations count (Tmax), and the measure-
ment of variables (dvar). Then:

( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )
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(12)

Searching features: Dual test functions are employed to demonstrate the search fea-
tures of AHA. RosenBrock is a popular test problem for gradient-based optimization algo-
rithms, it is a unimodal function is the first function. The c = (1, 1) with u(c) = 0 is the optimum 
solution for this purpose. The Rastrigin function is the 2nd function and c = (O, 0) with u(c) = 0 
is its optimal solution.

In the AHA, multiple objectives are merged into a single objective function, with each 
objective’s importance represented by a specific weight. In this study, we introduce a fitness 
function that integrates both feature selection objectives, as illustrated:

( ) ( ) *Fitness 1  
R

X E X
N

α β
 

= + −  
 

(13)

where Fitness(X) signifies the fitness value of a sub-set X, E(X) epitomizes the classifier rate of 
error by utilizing the nominated feature in the X sub-set, |R| and |N| are the number of nominated 
and original features, correspondingly, and α and β are weights of the classifier error and the 
lessening proportion, α ∈ [0, 1] and β  = (1 – α). 

Stacking ensemble of deep learning

Stacking is an ensemble method that utilizes multiple base learners (BL) to classify 
input data [21]. The classifiers from these level-0 learners serve as input for a meta-learner or 
Level 1 model, allowing diverse learners to independently classify data and enhancing analysis 
of varied data types. The stacking ensemble method incorporates three techniques: LSTM, 
DNN, and CNN, creating a larger neural network by combining the outputs of these models. 
Each BL leverages different techniques for classification, ensuring heterogeneity in data analy-
sis while employing similar loss activation functions.
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Instead of using a distinct method as the meta-learner, we developed a fully connect-
ed (FC) neural network layer to merge forecasts from the BL. This meta-learner conducts an 
additional training stage to refine the final result, forming a unified model that integrates four 
independent sub-models, an extra FC layer, and a resultant layer for final predictions. By com-
bining various identification techniques from the sub-models, the approach effectively captures 
diverse features in the data.

The LSTM classifier, a specialized type of recurrent neural network (RNN), is adept 
at learning long-term dependencies in data, addressing issues of exploding and vanishing gra-
dients in conventional RNN [22]. The LSTM units employ three types of gates to control data 
flow: the forget gate removes irrelevant information, the input gate retains new data, and the 
output gate decides what data to output. This structure enables LSTM to maintain cell state over 
time, facilitating long-sequence data processing. Figure 2 defines the infrastructure of LSTM.

Figure 2. Architecture of LSTM

The DNN classifier, inspired by the architecture of the human brain, excels in pattern 
recognition and uncovering hidden correlations through a self-learning process [23]. The DNN 
consist of multiple layers of connected nodes, allowing them to model complex relationships 
in data. They utilize a backpropagation method to adjust weights and biases during training, 
enabling them to learn intricate patterns and make accurate predictions on new data.

The CNN, a specialized category of DL methods, utilize convolutional layers instead 
of traditional matrix multiplication, making them particularly effective for image data [24]. 
A CNN comprises feature extraction and classification components, where input data passes 
through convolutional and pooling layers to create feature maps. These maps are then flattened 
and processed by FC layers for classification. The CNN excel at capturing spatial relationships 
and patterns within data, optimizing feature extraction for complex datasets.

Fine-tuning the deep learning model

The EWOA-assisted hyperparameter tuning method enhances stacking DL models 
using the enhanced elephant and walrus optimization algorithm (EWOA), a nature-inspired 
metaheuristic inspired by walrus social behavior and sensory adaptations. Walruses, known for 
their advanced tactile senses and unique canine teeth, inform the EWOA's modelling of popu-
lation behavior in response to safety alerts, leading to effective hyperparameter optimization. 
Key features of the EWOA approach are detailed in the subsequent sections:
 – Initialization.
 – The initial set of randomly generated candidate performances is used in the optimizer meth-

od within the variable bounds, with walrus location agents updated through iterations.
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 – Danger signals and safety signals:
The EWOA incorporates safety and danger alarms, which are crucial for understand-

ing walrus behavior. The danger signal can be defined:
Danger-signal  A R= × (14)

2A α= × (15)

1 t
T

α = − (16)

12 1R r= × − (17)
2Safety-signal r= (18)

where A and R sre the signify factor of danger, the factor α reduces from one to zero in the op-
timizer iterations. The random variables r1 and r2 are in zero and one. The safety signal can be 
described as r2. The t is number of iterations, whereas T represents its most predefined number.
 – Migration (exploration):

This phase signifies exploration in the method, the walrus location can be upgraded 
based on parameters containing a migration phase controlling factor β, and a randomly gener-
ated value r3. The formula for upgrading the walrus location:

1 Migration-stept t
ij ijX X+ = + (19)

( ) 2
3Migration-step t t

m nX X rβ= − × × (20)

( )10 0.5
11

1 e
t T
T

β
− −

= −

+
(21)

where Xij
t+1 is the novel location for the ith iteration and jth dimension, X tm and X tn are dual random 

chosen locations.
 – Reproduction (exploitation):

In the reproduction phase, behaviors vary among juvenile, male, and female walruses. 
Male walrus positions are adjusted using the Halton sequence distribution, while female loca-
tions are influenced by either a male or the dominant walrus, as expressed:

( ) ( ) ( )1
bestfemale female male female 1 femalet t t t t t

ij ij ij ij ijXα α+ = + × − + − × − (22)

( )1Juvenile 0 Juvenile  t t
ij ij P+ = − × (23)

best Juvenile  t t
ijO X LF= + × (24)

where O is the reference safety position, PPP – the danger coefficient of young walruses, and 
the LF – the vector signifies Levy movement, enhancing optimization. The integration of Levy 
flight (LF) improves the original EWOA, enabling efficient exploration of large search spaces 
through long jumps and heavy tails. This adjustment enhances convergence, making the EWOA 
a more effective meta-heuristic optimizer for complex problems. The Levy function is defined:

( )
1/

1/

1
20.01 , ( 1    

1 1| | 2
2 2

sin
uLF
v

γ
γ

γγ
σ σ

γ γγ

π Γ + ×  ×  = × =
+ −   Γ × ×   

   

(25)

where v, u is the stands for randomly generated value ranges from 0 to 1. 
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The fitness choice is crucial for the EEWOA system’s solution. The parameter selec-
tion uses an encoding technique to evaluate candidate solutions, with accuracy prioritized in the 
EEWOA approach, expressed: 

( )Fitness  max  P= (26)

TPP
TP FP

=
+

(27)

where TP implies the true positive and FP means the false positive rates.

Experimental results and analysis 

This section validates the MSDNet technique using the MS disease dataset [25], 
which includes 273 groups across two classes as depicted in tab. 1. While the dataset has 19 
features, 8 were selected: Gender, Age, Schooling, Breastfeeding, Varicella, Initial_Symptom, 
LLSSEP, and Periventricular_MRI. 

Table 1. Details on dataset

Classes Number of group

CDMS (clinical definite multiple sclerosis) 125

Non-CDMS (clinical definite multiple sclerosis) 148

Total number of group 273

Figure 3 displays the confusion matrices generated by the MSDNet model across dif-
ferent epochs, demonstrating effective recognition and classification of both classes. The MS 
disease recognition results of the MSDNet model, detailed in tab. 2, indicate that the system 
accurately identified every sample.

Figure 3. Confusion matrices of MSDNet technique; (a)-(f) epochs 500-3000 
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Table 2. The MS disease recognition outcome of MSDNet  
technique under distinct epochs

Class accuy precn recal F1score MCC
Epoch – 500

CDMS 97.44 100.00 94.40 97.12 94.94
Non-CDMS 97.44 95.48 100.00 97.69 94.94

Average 97.44 97.74 97.20 97.40 94.94
Epoch – 1000

CDMS 98.17 100.00 96.00 97.96 96.37
Non-CDMS 98.17 96.73 100.00 98.34 96.37

Average 98.17 98.37 98.00 98.15 96.37
Epoch – 1500

CDMS 97.80 100.00 95.20 97.54 95.65
Non-CDMS 97.80 96.10 100.00 98.01 95.65

Average 97.80 98.05 97.60 97.78 95.65
Epoch – 2000

CDMS 96.80 100.00 96.80 98.37 97.08
Non-CDMS 100.00 97.37 100.00 98.67 97.08

Average 98.40 98.68 98.40 98.52 97.08
Epoch – 2500

CDMS 99.27 100.00 98.40 99.19 98.53
Non-CDMS 99.27 98.67 100.00 99.33 98.53

Average 99.27 99.33 99.20 99.26 98.53
Epoch – 3000

CDMS 92.80 100.00 92.80 96.27 93.53
Non-CDMS 100.00 94.27 100.00 97.05 93.53

Average 96.40 97.13 96.40 96.66 93.53

Figure 4 delivers the average result of the MSDNet system under epochs 500-1500. 
On 500 epochs, the MSDNet model gets an average accuy of 97.44%, precn of 97.74%, recal 
of 97.20%, F1score of 97.40%, and MCC of 94.94%. Moreover, on 1000 epochs, the MSDNet 
method provides an average accuy of 98.17%, precn of 98.37%, recal of 98.00%, F1score  of 
98.15%, and MCC of 96.37%. In the meantime, on 1500 epochs, the MSDNet technique offers 
an average accuy  of 97.80%, precn of 98.05%, recal of 97.60%, F1score of 97.78%, and MCC of 
95.65%. 

Figure 5 offers an average result of the MSDNet approach under Epochs 2000- 3000. 
Based on 2000 epochs, the MSDNet methodology gets an average accuy of 98.40%, precn of 
98.68%, recal of 98.40%, F1score of 98.52%, and MCC of 97.08%. Based on 2500 epochs, the 
MSDNet model provides an average accuy of 99.27%, precn of 99.33%, recal  of 99.20%, F1score 

of 99.26%, and MCC of 98.53%. Based on 3000 epochs, the MSDNet technique delivers an 
average accuy of 96.40%, precn of 97.13%, recal of 96.40%, F1score of 96.66%, and MCC of 
93.53%. 
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Figure 4. Average of 
MSDNet technique;  
(a)-(c) epochs 500-1500

Figure 5. Average of 
MSDNet technique;  
(a)-(c) epochs 2000-3000
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Figure 6 illustrates the training (TRA) 
and validation (VLA) accuracy of the MSDNet 
technique over 2500 epochs. The accuracy val-
ues, spanning from 0 to 2500 epochs, show a 
consistent upward trend, indicating the model’s 
improved performance with more iterations. 
Additionally, the close alignment of TRA and 
VLA accuracy suggests minimal overfitting, 
highlighting the reliability of the MSDNet 
technique for accurate predictions on unseen 
samples.

Figures 7-9 demonstrate the performance 
validation of the MSDNet system at 2500 ep-
ochs. Figure 7 shows a decreasing trend in TRA 
and VLA loss rates, indicating the model's ef-
fectiveness in balancing generalization and 
data fitting. Figure 8 presents the precision-re-
call (PR) curve, highlighting consistently high 
PR values across classes, which reflect the 
model’s ability to capture true positives. Figure 
9 displays the receiver operating characteristic 
(ROC) curve, showing high ROC scores for 
each class, underscoring the strong classifica-
tion capability of the MSDNet approach.

      
Figure 8. The PR curve of MSDNet  
technique on epoch 2500

Figure 9. The ROC curve of MSDNet  
technique on epoch 2500

The comparative analysis of MSDNet methodology with recent techniques is demon-
strated in tab. 3 [16, 26-28]. Figure 10 delivers comparison results of the MSDNet system with 
existing models in terms of accuy. Based on accuy, the MSDNet model has a greater accuy of 
99.27% while the ANN, RF, GBM, RKPCA, SVM, NB, Ensemble Method and GNB methods 
have lesser accuy of 94.64%, 89.80%, 93.67%, 90.59%, 98.03%, 98.40%, 97.93%, and 98.65%, 
correspondingly. 

Figure 11 provides comparison results of the MSDNet approach with recent tech-
niques in terms of precn, recal, and F1score. Depending upon precn the MSDNet model has a 
greater precn, of 99.33% while the ANN, RF, GBM, RKPCA, SVM, NB, Ensemble Method 
and GNB methods have reduced precn, of 94.55%, 90.73%, 95.88%, 94.31%, 95.89%, 95.71%, 

Figure 6. The accuy 
curve of MSDNet  

technique on epoch 2500

Figure 7. Loss curve of MSDNet technique  
on epoch 2500
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92.97%, and 98.80%, correspondingly. Similarly, based on recal the MSDNet system has a 
greater recal, of 99.20% while the ANN, RF, GBM, RKPCA, SVM, NB, Ensemble Method 
and GNB methodologies have a lesser recal, of 96.02%, 92.66%, 93.79%, 96.78%, 91.90%, 
91.57%, 93.72%, and 96.81%, respectively. Furthermore, based on F1score, the MSDNet tech-
nique has a larger F1score, of 99.26% while the ANN, RF, GBM, RKPCA, SVM, NB, Ensem-
ble Method and GNB approaches have smaller F1score, of 95.64%, 90.37%, 93.43%, 90.55%, 
93.23%, 89.73%, 92.56%, and 97.40%, correspondingly.

Table 3. Comparative outcome of MSDNet technique with existing models
Techniques accuy precn recal F1score

ANN algorithm 94.64 94.55 96.02 95.64
Random forest 89.80 90.73 92.66 90.37
GBM model 93.67 95.88 93.79 93.43
RKPCA technique 90.59 94.31 96.78 90.55
SVM classifier 98.03 95.89 91.90 93.23
Naive bayes 98.40 95.71 91.57 89.73
Ensemble method 97.93 92.97 93.72 92.56
GNB algorithm 98.65 98.80 96.81 97.40
MSDNet 99.27 99.33 99.20 99.26

      
Figure 10. The accuy analysis of MSDNet 
technique with existing models

Figure 11. The precn, recal, and F1score analysis 
of MSDNet technique with existing models

In tab. 4 and fig. 12, the comparative results of the MSDNet technique are identified in 
terms of performance time (PT). The outcomes recommend that the MSDNet approach obtains 
improved performance. Based on PT, the MSDNet method delivers a lesser PT of 5.30 minutes 
whereas the ANN, RF, GBM, RKPCA, SVM, NB, ensemble method, and GNB systems attain 
greater PT values of 10.36 minutes, 9.15 minutes, 8.36 minutes, 13.65 minutes, 11.53 minutes, 
9.86 minutes, 7.26 minutes, and 8.34 minutes, correspondingly.

Conclusion

In this article, we have introduced a novel MSDNet approach. The main objective 
of the MSDNet model is to recognize and classification of MS disease diagnosis. It comprises 
various kinds of stages involved as data normalization, feature selection, stacking ensemble of 
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DL classifiers, and hyperparameter tuning processes. Firstly, the proposed MSDNet technique 
executes the min-max data normalization method to measure the data into a uniform range. Fur-
thermore, an AHA-based feature selection process is taken to choose an optimal subset of fea-
tures. For the MS diagnosis process, a stacked ensemble of DL classifiers is involved as LSTM, 
DNN, and CNN. Eventually, the https://genesys-academy-cs.slack.com/archives/D01CXJ64S-
RL/p1651296442330079EEWOA-assisted hyperparameter tuning method gets performed to 
enhance the efficiency of the stacking DL approaches. The experimentation outcome of the 
MSDNet approach undergoes and the performances are examined under altering aspects. The 
simulation study indicated the power of the MSDNet approach over existing models.
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