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Agricultural biomass is an important renewable energy source with 

significant environmental and economic benefits. However, high ash content 

in biomass can lead to problems such as slagging, fouling, and corrosion 

and can reduce the efficiency of energy systems. This study analyzes the 

proximate composition of different biomass samples, focusing on ash 

content, and uses machine learning to model ash content based on other 

components. Six biomass types, including rapeseed, barley, wheat, corn, 

soybean and sunflower, were examined to analyze the content of coke, fixed 

carbon (FC), volatile matter (VM) and ash. The results showed considerable 

variability, with ash content ranging from 8.25 % for rapeseed to 12.3 % for 

soybean. Artificial neural networks (ANN) were used to model ash content 

with a high accuracy of R² = 0.92. The model effectively estimated the ash 

content based on the input parameters and demonstrated the potential of 

machine learning to optimize biomass selection for energy production. 

Key words: biomass, artificial neural networks, proximate analysis, ash 

content, modelling. 

1. Introduction 

Biomass has attracted considerable attention as a key renewable energy source that can play a 

crucial role in reducing dependence on fossil fuels and mitigating climate change. Biomass refers to 

organic materials such as agricultural residues, forestry by-products, and specialized energy crops that 

can be converted into bioenergy through various processes such as combustion, gasification, and 

anaerobic digestion [1]. The use of biomass to generate energy not only offers a sustainable alternative 

to conventional fuels but also promotes the circular economy by valorizing waste materials. Biomass 

is considered carbon neutral as the CO2 released during combustion is offset by the CO2 absorbed 

during the growth of the biomass [2].  

The European Union (EU) has set ambitious targets for renewable energies as part of its climate 

and energy policy. The Renewable Energy Directive (RED II) [3], which is part of the European 

Green Deal, advises that at least 32% of energy consumption in the EU should come from renewable 

sources by 2030 Mehedintu et al., (2021) [4]. Biomass is expected to play an important role in 

achieving these targets due to its versatility and availability. The EU's focus on sustainability has led 

to strict criteria for the sourcing of biomass to ensure that biomass production does not endanger food 
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security and biodiversity [5]. These criteria are designed to promote sustainable land management 

practices and protect natural ecosystems while maximizing the climate benefits of biomass. 

Despite its advantages, the use of biomass for energy production poses certain challenges, 

particularly about its ash content [6]. Ash as an inorganic residue that remains after the complete 

combustion of biomass contains minerals such as silica, alumina, iron oxide, and various alkali metals 

[7,8]. A high ash content can lead to various operational problems in biomass energy systems, e.g. slag 

deposits and metal corrosion in combustion systems [9]. The management and disposal of ash residues 

also require careful handling and can be associated with additional costs. Considering the critical 

influence of ash content on biomass utilization, this study aims to perform a detailed analysis of the 

proximate composition of different biomass samples with a focus on ash content. By examining 

parameters such as coke, fixed carbon (FC), volatile matter (VM), and ash, we seek to identify 

biomass types with favorable characteristics for energy production. VM, ash content, and FC content 

are important components for characterizing fuel materials. Biomass having high volatile matter and 

low ash content is generally a promising feedstock for biofuel production [10]. 

Rapeseed and sunflowers are characterized by a low to moderate ash content and good 

combustion properties, making them suitable for efficient bioenergy applications. Although barley and 

wheat have a higher ash content, they offer a high fixed carbon content, reflected in a high energy 

yield. Corn, characterized by a high content of volatile components, is ideal for pyrolysis and 

gasification. Despite the higher ash content, soy provides a high energy yield due to high fixed carbon 

content.. These diverse biomass sources, which are abundant in agricultural residues, underline the 

potential for optimized and sustainable bioenergy production. 

Machine learning models have recently been increasingly used for modeling and estimation 

purposes in various fields of engineering [11]. Machine learning algorithms enable modeling with big 

data to achieve task-specific results and modeling of outcomes [12]. For such tasks, MLP (Multi Layer 

Perceptron) ANNs, which take the approach of selecting a set of dependent variables and thus creating 

predictive models for these variables, have proven to be one of the most suitable forms [13].  

Conventional methods of mathematical models for estimating desired output values cannot fully 

capture the nonlinearity present in the data, thus artificial neural network (ANN) models appear as an 

applicable high-performance tool [14]. ANN models have self-learning capabilities and can be 

described as a system consisting of units (artificial neurons) connected into a single unit that forms a 

network [15]. The main challenges in applying machine learning in research include missing (quality) 

data and missing annotations, which limits the reliability of the model. In addition, larger 

computational resources are usually required for efficient model training. Furthermore, it is important 

to point out that such models often face challenges when it comes to integrating them between 

different systems and ensuring their comprehensibility and usability [16]. Ramachandra and Mandal, 

(2023) [17] conducted a study to predict the ash content in different types of concrete using ANN and 

SVM (Support Vector Machine) algorithms. A total of 406 data points were used for the study and 

they achieved high accuracy in terms of correlation coefficient for ANN (0.97) and SVM (0.98). The 

SVM model performed better with lower MAE and RMSE values. On the other hand, Abhishek et al., 

(2023) [18] developed an ANN model to estimate the compressive strength of concrete with corn cob 

ash. The model had an average accuracy of 98%, which shows that ANN is an effective method for 

estimation in the mentioned applications. 
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The aim of this research was to develop an artificial neural network (ANN) for the prediction of 

ash content in different types of biomass based on input variables such as the content of coke, fixed 

carbon (FC) and volatile matter (VM). The research is focused on accurate ash modeling using 

machine learning, to optimize the biomass selection processANN is used to improve the accuracy of 

these predictions, providing a valuable tool for biomass selection and processing optimization. These 

models have been trained and validated using compositional data from different biomass samples, 

demonstrating their potential to predict ash content with high accuracy. 

 

2. Materials and Methods 

2.1.  Feedstock selection and collection 

Six biomass of post-harvest residues were characterized in this study, three oilseeds: rapeseed, 

soybean and sunflower and three cereals: wheat, barley, and corn. All examples that have been 

collected are first dried at 60 °C to remove moisture. After drying, the sample was ground using a 

crasser machine and rubbed using a flouring device until it reached 500 μm. 

2.2. Proximate analysis of biomass 

Proximate analysis was conducted on biomass materials to determine ash content (AC), volatile 

matter (VM), and fixed carbon (FC). All analyses were carried out in triplicate, and the average values 

were reported.  

2.3. Determination of ash content, volatile matter, and fixed carbon 

0.5–1 g of each biomass sample is weighed into pre-dried porcelain pots in a laboratory dryer at 

105 °C for 1 h. Subsequently, the samples are placed in the muffle furnace, Naberthertm GmbH at a 

temperature of 550 °C for 5h30min with an initial preheating time of 15 min. After cooling to room 

temperature, the ash content is determined by calculating the difference in sample weight before and 

after the procedure. Volatile matter comprises the compounds that vaporize when the biomass is 

heated, influencing combustion characteristics. In this study, the ash content was determined by 

heating the sample in an inert atmosphere at 900 °C for 4 minutes and then calculating the weight loss 

without moisture. Fixed carbon is the solid combustible residue left after the release of volatile matter, 

indicating the potential energy content. This parameter was calculated indirectly as the difference 

between 100% and the sum of moisture, ash, and volatile matter percentages. The coke content was 

determined by burning the biomass sample in a muffle furnace at a temperature of 900 °C for 5 

minutes. After combustion, the samples were placed in a desiccator to cool down. The coke content 

was calculated based on the mass difference before and after combustion.  

2.4. Statistical analysis 

After the laboratory analysis, the data was compiled in Excel and a database was created in .csv 

format. The data was statistically processed to determine descriptive statistics. To determine the 

differences between the observed categories, an analysis of variance (ANOVA) and the LSD test 

(Fisher Least Significant Difference) were performed. To assess the degree of correlation between the 
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variables studied in the research, a correlation analysis was also performed and the distribution of each 

variable in relation to the category of the sample was presented. All statistical analyzes were 

performed in the Python programming language [14] using the coresponding packages. 

2.5. Artificial neural networks (ANN) 

To create a database for the modeling, a total of 521 samples were used, which were categorized 

according to the type of biomass. When creating the model, different types of biomass were 

categorized and processed using the one-hot encoding method. This method converted the biomass 

types into separate binary attributes, which enabled the correct integration of categorical data [19]. The 

architecture of the developed model is sequential, with each layer receiving input values from the 

previous layer. During the development of the ANN model, a hyperparametric optimization was 

performed to find the optimal settings for the neural network. Different combinations of 

hyperparameters (number of layers (3-10), number of neurons per layer (1-20), and batch size (1-10)) 

were tested using grid search and random search methods.. The model was developed with a total 

architecture of 5 dense layers: 64 neurons in the first layer, 32 in the second and third layers, 16 in the 

fourth layer and 1 in the output layer (Fig 1). The activation functions used are Rectified Linear Unit 

(ReLU) for the first four layers, which provide nonlinearity [20], while a linear function is used for the 

output layer, which in this case is suitable for a regressive task. The ADAM algorithm [21] was used 

to optimize the model, which has high performance in updating the weighting coefficients with respect 

to data loss. The chosen architecture of the ANN model, which consists of 5 dense layers and a certain 

number of neurons, was obtained through an iterative process of trial and error methods. In this 

process, different architectures were tested and evaluated, with the final configuration selected based 

on the best performance of the model in terms of prediction accuracy and generalization on validation 

data.  The model was trained with 4000 epochs (number of iterations in the learning process),  

corresponding to the total number of runs through the entire training dataset. The batch size was set to 

50, which affects the training speed and convergence stability of the model. The modeling data is 

randomly divided into two parts, a learning  

 

Figure 1. Schematic representation of the ANN model developed for estimating the ash content 

as a function of the input data of the proximate analysis 
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part (80%) and a validation part (20%). This data split allowed the model to learn from a larger data 

set while validating the model with a smaller data set to determine the possibility of generalizing an 

unseen portion of the data[22]. The ANN model was used to create the Python programming language 

with the associated packages (pandas, seaborn, NumPy and Tensorflow). 

2.6. Model evaluation 

Once the ANN model had been created and the calculations obtained, a statistical analysis was 

carried out to evaluate the model. For this purpose, the error metrics Root Mean Squared Error 

(RMSE) (1), Mean Absolute Error (MAE)(2), Mean Biased Error (MBE) (3), and Mean Percentage 

Error (MPE) (4) were used. To show the degree of regression achieved by the model, the coefficient of 

determination (R
2
) (5) was also used as a benchmark [23,24]: 
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Where yp are the values determined by the model and yt are the target values 

3. Results 

Tab. 1 shows a proximate analysis of the biomass of different agricultural crops, including 

rapeseed, barley, wheat, corn, soybean, and sunflower. 

Tab. 1 provides a detailed comparative analysis of the proximate composition with parameters 

coke, fixed carbon (FC), volatile matter (VM), and ash content. The highest coke content was 

observed in wheat (26.90 %), while corn exhibited the lowest coke content (16.21%). Barley had the 

highest FC content (16.42 %) while corn had the lowest FC content (6.27 %). VM content was highest 

in corn (75.66 %) and lowest in barley (65.96 %). The ash content was highest in soy (12.30 %) and 

lowest in rapeseed (8.25 %). 

 



 

6 

 

 

 

Table 1. Statistical analysis of proximate composition in various biomass samples 

Sample Coke (%) FC (%) 
VM 

(%) 

Ash 

(%) 

MC 

(%) 

Rapeseed 
17.94± 

2.71
AB

 

9.64± 

2.12
A
 

72.24± 

2.59
B
 

8.25± 

1.31
A
 

7.44± 

2.66
AB

 

Barley 
26.62± 

18.56
C
 

16.42± 

17.3
B
 

65.96± 

17.27
A
 

10.54± 

3.91
BC

 

7.03± 

2.79
AB

 

Wheat 
26.9± 

19.94
C
 

15.23± 

19.11
B
 

65.97± 

18.31
A
 

11.67± 

3.57
CD

 

9.63± 

1.44
C
 

Corn 
16.21± 

2.89
AB

 

6.27± 

3.57
A
 

75.66± 

3.49
B
 

9.92± 

3.3
B
 

7.92± 

1.56
B
 

Soy 
21.45± 

6.16
B
 

9.12± 

3.98
A
 

71.82± 

5.57
B
 

12.3± 

4.64
D
 

10.83± 

3.61
D
 

Sunflower 
20.26± 

4.65
AB

 

9.47± 

2.79
A
 

71.62± 

7.05
B
 

10.9± 

3.51
C
 

6.7± 

1.09
A
 

Minimum 16.21 6.27 65.96 8.25 6.70 

Maximum 26.90 16.42 75.66 12.30 10.83 

Average 21.57 11.02 70.54 10.60 8.26 

CV 42.43 73.88 12.82 31.83 26.53 

Statistical 

significance 
* * * * * 

MS 1675.7 1331.92 1284 164.56 41.67 

Note: The results in the tab. 1 are given as mean values ± standard deviation; All results are presented 

on a dry basis. CV - Coefficient of Variation; MS – Mean square. Different letters in the same column 

represent the difference between the observed values according to the Fisher LSD post hoc test (*p < 

0.05). Statistical significance: * p<0.01. 

 

Fig. 2 shows the distribution of the investigated variables about the type of biomass (indicated 

by a different color) as a scatter plot with Pearson's correlation coefficient (r), with statistically 

significant correlations at p≤0.01 marked with asterisks (*). 



 

7 

 

 

Figure 2. Correlation matrix of proximate composition parameters in various biomass samples 

 

The variable ash (which was used as the initial variable of the ANN model) is positively 

correlated with FC (r=0.77) but does not show a statistically significant relationship. On the other 

hand, coke and ash are statistically significantly correlated at p≤0.01 (r=0.33), while VM and ash are 

negatively correlated (r=-0.32). 

Fig. 3 shows the training and validation loss over an epoch in the process of modeling the ash 

content considering the inputs of the proximate analysis. 

 

Figure 3. Training and validation loss over epochs 

 

Both training and validation loss start at a high value, rapidly decreasing within the first few 

hundred epochs. As the number of epochs increases, the losses continue to decrease and stabilize, 

showing minimal fluctuations after around 1000 epochs.  
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Table 2. Statistical performance indicators of the developed ANN model for ash estimation 

R
2
 

Train 0.93 

Test 0.88 

Overall 0.92 

RMSE 

Train 0.94 

Test 1.37 

Overall 1.04 

MAE 

Train 0.49 

Test 0.84 

Overall 0.56 

MBE 

Train 0.18 

Test 0.23 

Overall 0.19 

MPE (%) 

Train 2.42 

Test 4.08 

Overall 2.75 

Execution time (s) 383 

R
2
 – Coefficient of determination; RMSE – Root mean squared error; MAE – Mean absolute error;  

MBE - Mean biased error; MPE – Mean percentage error 

Tab. 2 shows the statistical performance indicators of the developed ANN model. The following 

metrics were used as error measures: RMSE, MAE, MBE and MPE. On the other hand, R
2
 is used as a 

specific indicator of the regression of the model. 

ANN showed high performance in modeling the ash content (Tab. 2). The overall R
2
 value was 

0.92, indicating that the model has a high degree of regression, which can also be seen in Fig. 4. When 

looking at the modeling error, all statistical indicators have a low error level. 

 

 
 

Figure 4. Scatter plot of the observed versus the predicted ash content using the ANN model 

 

4. Discussion 

Proximate analysis of the six biomass samples analyzed in this study revealed considerable 

variability in their composition. Rapeseed biomass sample demonstrated relatively low ash content 
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(8.25%) compared to other types of biomass and high volatile matter (72.24%). Tahir et al. (2019) [25] 

reported a higher VM of 81.85% and a significantly lower ash content of 4.83% for rapeseed biomass. 

The above-mentioned variability is possible due to different cultivation and climatic conditions. 

Barley showed the highest coke (26.624%) and FC (16.42%) content among the samples, with an ash 

content of 10.54% and VM  of 65.96 %. Despite the higher ash content, barley's substantial FC 

suggests a high energy yield, though ash management strategies are necessary. Wheat biomass 

exhibited a high ash content (11.67%) and comparable FC (15.23%) and VM (65.97%) levels. Shen et 

al. (2010) [26] reported FC values for wheat straw ranging from 18.95% to 23.50%, VM from 63.00% 

to 71.78%, and ash content from 9.27% to 13.50%, indicating that our results fall within these reported 

ranges. The higher ash content poses challenges but can be mitigated with appropriate combustion 

technologies. 

Corn biomass had the lowest coke (16.214%) and a high VM (75.66%), with moderate ash 

content (9.92%). These values differ from those reported by Sulaiman (2019) [27], who found VM of 

55%, FC of 44.3%, and ash content of 0.7% in corn stalks. Soy biomass displayed a relatively high ash 

content (12.3%) and FC of 9.12%. Motghare et al. (2016) [28] reported lower values for soybean 

waste, with an ash content of 4.7%, VM of 70.5%, and FC of 19.0%. This indicates that the 

composition of soybean biomass can vary significantly. The higher ash content in this research 

findings suggests greater challenges in combustion processes compared to the lower ash content 

reported by Motghare et al. (2016) [28]. Sunflower biomass showed moderate ash content (10.9%) and 

high VM (71.62%). These findings differ from those of Kułażyński (2018) [29] and Casoni (2019) 

[30], who reported lower ash contents (1.95% and 2.1%, respectively) and similar VM levels (77.72% 

and 79.8%). The moderate ash content and high volatile matter content suggest that sunflower biomass 

can be efficiently utilized for energy production with appropriate combustion technology. 

The last part of the research involved the development of an ANN model to evaluate the 

possibility of its use in modeling the ash content of different types of biomass with respect to the input 

variables of the proximate analysis. Ash is an important indicator of fuel quality for which numerous 

assessment studies have been conducted [31-33]. The ANN model was developed in the sequential 

form of the architecture of 64-32-32-16 artificial neurons for the input, 2 hidden and output layers. The 

model showed high performance in ash estimation, as indicated by a high R
2
 = 0.92 and low error 

levels RMSE (1.04), MAE (0.56), MBE (0.19) and MPE (2.75%). In comparison to the literature, 

(Ghosh et al., 2016) conducted a study in which he estimated ash based on the input variables of the 

geophysical log and core analysis data and achieved an R
2 

of 0.84. To estimate the proportion of ash 

produced by burning coal in a power plant, Bekat et al., (2012) [34] used the ANN model using the 

input data of MC, ash content and LHV of the raw materials and obtained an R
2
 >0.97. In addition, for 

the ANN model, I measured the execution time of the code, and the results were obtained after 383 

seconds. ANN models of the regression type are subject to several limitations that have been analyzed 

in different studies. One of the most important limitations is the problem of sensitivity to the size of 

targets, where the MSE is unfavorable as a statistical measure for targets with different sizes, which 

can be solved by alternative methods such as loss histograms. Other research indicates that ANN 

models use non-linear algorithms that improve short-term predictions but not necessarily accuracy, so 

a combination with traditional statistical methods is required for better results [35]. In addition, ANN 

models often ignore specific laws in engineering applications, which can lead to inconsistent results 

[36]. It can be concluded that by combining different approaches, it is possible to overcome the main 
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limitations of ANN regression models and improve their perfor-mance. Future research should focus 

on expanding the database for ash content modelling as well as expanding the categorical variables – 

in this case, biomass types. Also, in addition to the ANN model, future research should compare 

different approaches for machine learning regression models to determine the most appropriate model 

through comparison. 

5. Conclusions 

In summary, ANN models have potential for estimating the ash content in biomass and provide 

accurate predictions that can be used to optimize the selection of biomass for energy purposes. The 

main results of the research are: 

 ANN models were trained on six types of biomass (rapeseed, barley, wheat, corn, soybean, 

sunflower) and showed high accuracy in estimating ash content with 𝑅2
=0.92 

 Optimal hyperparameter values were determined using grid search and random search 

methods, and the Adam algorithm were used for model optimization. 

 The results showed low error values: RMSE (1.04), MAE (0.56), MBE (0.19) and MPE 

(2.75%). 

 ANN models recognize complex nonlinear relationships between the input variables and 

enable more accurate predictions compared to conventional linear regression models. 

 One of the biggest challenges remains the need for large amounts of quality data for model 

training. 

 The study showed considerable variability in ash content between different biomass types, 

which emphasizes the importance of adapted models for different biomass types. 

 The combination of different approaches can further improve the accuracy and robustness of 

ANN models and make them a valuable tool in the field of renewable energy. 
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