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This study investigates the dynamical behaviour of a two-cell (two-atom) quantum 
battery driven by a two-mode charging field. We explore the influence of varying 
interaction strengths on the system’s performance. This includes increasing the 
coupling between cells and charging fields, and cells themselves through a di-
pole interaction and Ising interaction along the z-axis. Additionally, the impact 
of environmental effects is examined by incorporating decay terms for both the 
charging fields and the cells. Our analysis focuses on key performance metrics 
such as stored energy, average power, ergotropy, energy fluctuations, and quantum 
speed limit time. The results reveal that the environment negatively impacts stored 
energy, power, and ergotropy, but leads to higher speed limits. Enhanced coupling 
between the charging fields and the cells improves the studied correlations, pro-
moting efficient energy transfer and decreasing speed limit time. Increasing the 
coupling between the cells, either via the dipole or Ising interaction, generally 
exhibits a similar effect. This involves a decrease in maximum achievable energy 
storage, accompanied by the emergence of more erratic energy fluctuations.
Key words: quantum battery, two-mode charging field, stored energy,  

average power, ergotropy, energy fluctuations

Introduction

In the contemporary era, portable energy storage devices, epitomized by batteries, 
underpin many applications that permeate our daily lives, these ubiquitous systems power var-
ious technologies, from household appliances and medical instrumentation transportation and 
navigation systems. The efficacy of these devices is intrinsically linked to the efficiency of the 
underlying energy conversion mechanisms [1-3]. Conventional batteries operate on the princi-
ple of electrochemical cells, which facilitate the conversion of chemical energy into electrical 
energy through redox reactions. However, as the miniaturization of electronic devices continues 
apace, quantum effects become increasingly influential. This phenomenon presents a captivat-
ing opportunity to develop a new generation of devices that surpass their classical counterparts 
by harnessing the tenets of quantum mechanics [4-8]. A particularly promising avenue in this 
domain lies in the exploration of quantum batteries (QB). A QB can be defined as an assem-
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blage of one or more quantum systems, typically characterized by two distinct energy levels, 
that possess the inherent capacity to store energy. The concept of QB garnered significant sci-
entific interest following the pioneering work of Alicki and Fannes in [9].

Theoretically, QB present a paradigm shift in energy storage, harnessing the principles 
of quantum mechanics to surpass conventional battery technology. Understanding QB perfor-
mance necessitates delving into two fundamental processes: charging and discharging. Discharg-
ing signifies the inevitable energy loss experienced by a QB through interactions with its envi-
ronment, mirroring a phenomenon observed in classical batteries [10-12]. Conversely, charging 
entails the utilization of an external energy field to replenish the QB’s internal energy reserves 
[13, 14]. To comprehensively assess the effectiveness of a QB, a multitude of key metrics are 
employed. These metrics encompass stored energy, ergotropy, charging power, and others [15-
17]. The first protocol of QB proposed the potential of entanglement operations to augment the 
extractable energy from a QB [9]. However, this notion was subsequently contested by Hovhan-
nisyan et al. [18] who demonstrated that optimal energy extraction could be achieved through 
sequential permutation operations, circumventing the need for dynamic entanglement generation. 
Notably, the implementation of such permutation operations comes at the cost of increased time 
expenditure. Conversely, collective charging operations that leverage entanglement creation are 
believed to offer a substantial speedup compared to parallel charging schemes where individual 
QB cells are charged independently [19]. Disordered interactions within a QB, characterized by 
the absence of a well-defined order, have been demonstrated to enhance charging power [20]. 
Additionally, studies have shed light on the influence of disorder and localization on QB behav-
ior. Notably, QB in the many-body localized phase exhibit greater stability and require shorter 
optimal charging times compared to those in localized phases [21]. The quantum entanglement 
and coherence, key features of the quantum realm, have also been investigated in the context of 
two- and three-cell QB [22]. These studies suggest that while entanglement appears to have a 
minimal or even detrimental effect on efficiency, quantum coherence exhibits a demonstrable 
correlation with QB performance. However, further research is needed to definitively elucidate 
the precise role of quantum correlations in QB. While some studies suggest a relationship between 
QB performance and its correlation content, a clear understanding remains elusive [23]. Recent 
investigations have explored the impact of using three well-known quantum optical states – Fock, 
coherent, and squeezed vacuum – as the initial state of the charger [14]. These findings indicate 
that the coherent state emerges as the optimal choice for both energy deposition and extraction due 
to its ability to minimize charger-battery entanglement.

Our motivation in this article is to advance the understanding and practical imple-
mentation of quantum battery systems through analytical study. This research investigates the 
energy dynamics, focusing on average charging and discharging power, ergotropy, energy fluc-
tuation, and the quantum speed limit. By solving the quantum battery system analytically, we 
aim to understand how these metrics are influenced by Hamiltonian parameters, especially 
interaction parameters, and environmental effects. This study provides a framework for op-
timizing QB, demonstrating the potential for superior performance and contributing to both 
theoretical foundations and practical advancements in quantum energy storage. 

The model

Let a two-cell QB composed of two-level atoms with identical transition frequencies 
ωq. Each cell interacts with a distinct two-mode of a quantized electromagnetic field, charac-
terized by frequencies ωa and ωb, respectively. The interaction between the cell system and 
the charger system is governed by the rotating wave approximation and a coupling strength λ1. 
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Furthermore, a dipole-dipole interaction with a coupling constant λ2 is introduced to account 
for the interaction between the two cells. Additionally, the Hamiltonian incorporates the effect 
of an Ising interaction within the cell system, characterized by a coupling exchange constant 
λ3. To capture the inevitable energy loss and decoherence experienced by both the atomic and 
field systems, the model incorporates a term representing these dissipative effects. The physical 
Hamiltonian of this battery is expressed:
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emission rate γ of the two-level system and the dissipation of the two mode cavity field into the 
surrounding environment at a rate κa, κb. Alternatively, to obtain the temporal wave-vector of 
this QB, one approach involves assuming a specific initial state for the system. This initial state 
can be represented:
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where |g⟩ is the ground state of the cells, signifying an empty battery, while |α, β⟩ represents the 
coherent state of the two-mode field, functioning as the charger for the system. The temporal 
wave-vector of the QB is given:
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Applying the wave-vector eq. (3) in time-dependant Schrodinger equation:
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Now, the solution of the system:
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Additionally:
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Subsequent sections will explore the influence of various parameters on the correlation 
properties of a QB. These parameters include three coupling strengths, λ1, λ2, and λ3, as well as 
decay parameters represented by κa, κb, and γ. The discussion will focus on key QB correlations, 
encompassing stored energy, power output, ergotropy, fluctuation levels, and quantum speed 
limit time. For consistency throughout the analysis, we will assume that the frequencies of the 
QB system are identical, expressed as ωa = ωb = ωq = ω0. The coherent state intensity for the 
two-mode are equal with α = β = 3. All quantitative measures of the QB performance will be pre-
sented as functions of scaled time ω0t, normalized by the system’s characteristic frequency ω0.

Stored energy

The evaluation of a QB's performance hinges critically on the quantification of its 
stored energy. Within the framework of Hamiltonian for the cells H^

QB, collective excitation 
states serve as the quantifiable measure of this energy. This energy embodies the system’s 
capacity to perform work and is demonstrably influenced by various factors. These factors 
include the initial state of the QB |ψ(0)⟩, the employed charging protocols, and the nature of its 
interactions with the surrounding environment. The energy stored E(t) within the QB at time, t, 
can be calculated [24, 25]:
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Figure 1 investigates the impact of Hamiltonian coupling strengths and decay pa-
rameters on the stored energy, E(t) in eq. (15), of the quantum battery. As illustrated in fig. 1(a),  
increasing the field-atom coupling strength λ1 at constant dipole-dipole (λ2) and ising (λ3) couplings 
(both set to 0.1) leads to an enhancement of the average stored energy, E(t). This behaviour exhibits 
characteristics of quasi-chaos. Conversely, for smaller values of λ1, the stored energy exhibits period-
ic oscillations and approaches zero during certain time intervals. Figure 1(b) explores the effect of in-
creasing the dipole-dipole coupling strength (λ2) by varying its value (1, 2, and 5) while maintaining 
λ1 and λ3 at 0.1. At low values of λ2, the stored energy exhibits slight oscillations over the measurement 
time. However, as λ2 increases, the behaviour becomes more random, accompanied by a decrease in 
the maximum stored energy values. The influence of increasing the Ising coupling strength (λ3) on 
the stored energy is depicted in fig. 1(c), where λ3 is varied (1, 2, and 5) while λ1 and λ2 remain at 0.1. 
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Similar to the dipole-dipole coupling, increasing λ3 leads to a decrease in the stored energy and an in-
crease in fluctuations. Notably, the Ising coupling appears to have a more detrimental effect compared 
to the dipole-dipole coupling. This suggests that enhancing any coupling associated with the battery 
cells might reduce the stored energy and potentially distort the interaction between the cells and the 
charging source (photons). The impact of decoherence on the stored energy at constant couplings  
(λ1 = λ2 = λ3 = 0.1) is presented in fig. 1(d). Here, increasing the decay parameters results in a decrease 
in the stored energy over time. This phenomenon is also observed in classical batteries. However, it 
is noteworthy that the decay of the atomic system exerts a weaker influence compared to the decay 
of the charging source.

Figure 1. The energy against scaled time; (a) λ2 = λ3 = 0.1, κa = κb = γ = 0, but λ1 changed,  
(b) λ1 = λ3 = 0.1, κa = κb = γ = 0, but λ2 changed, (c) λ1 = λ2 = 0.1, κa = κb = γ = 0, but λ3 changed,  
and (d) λ1 = λ2 = λ3 = 0.1, but κa, κb and γ changed

Average charging power

In the context of evaluating results, the average charging power of a QB emerges as a 
paramount indicator of the system’s temporal energy transfer rate [19]. This metric is demon-
strably susceptible to the combined influence of charging efficiency and environmental factors, 
thereby significantly impacting the assessment of battery performance. A thorough understand-
ing and subsequent optimization of average charging power are critical endeavors in maximiz-
ing the utility of quantum technologies. Efforts directed towards the refinement of charging 
mechanisms hold the potential to elevate both the efficiency and sustainability of quantum bat-
tery technologies [26], ultimately serving as a catalyst for innovation within quantum-enabled 
systems. The formal definition of average charging power is given [27]:

( )( ) =C
E tP t

t
(16)
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Figure 2 explores the impact of coupling strengths (λ1, λ2, λ3) and decay parameters 
on the charging power of the QB. It is observed that the charging power tends towards a min-
imal value over time, regardless of whether the coupling strengths are increased or decreased.  
Figure 2(a) reveals several significant trends related to the field-atom coupling strength (λ1) 
between the two-mode charger and the two quantum cells. Notably, the range of the average 
charging power exhibits a rapid increase for λ1 = 1 compared to λ1 = 0.05 and 0.1. This indi-
cates that higher values of λ1 significantly enhance the QB’s charging power. Additionally, the 
duration of the charging process decreases as λ1 increases. Moreover, fig. 2(b) presents notable 
trends concerning the dipole-dipole coupling strength (λ2). The range of the average charging 
power exhibits a slight decrease for λ2 = 2 and 5 compared to λ2 = 1. This suggests that λ1 values 
greater than zero lead to a marginal reduction in charging power, indicating a more moderated 
charging process. Furthermore, the charging duration remains stable across different λ1 values, 
implying consistent charging behavior and contributing to a predictable and reliable charging 
cycle. Figure 2(c) investigates the effects of the Ising coupling strength (λ3) on the average 
charging power. It is evident that the range of average charging power experiences a moderate 
decrease for λ3 = 2 and 5 compared to λ3 = 1. Higher Ising strength leads to a reduction in the 
charging power range, suggesting a more controlled charging process. Similar to the dipole-di-
pole coupling, the charging duration remains stable across different λ3 values, indicating that λ13 

does not significantly impact the charging time. However, chaotic behavior begins to emerge 
at λ3 = 5, highlighting a potential increase in complexity at higher Ising interaction strengths. 
Overall, the average charging power behavior for λ3 exhibits greater stability compared to λ2 
interaction but less stability than λ1. The influence of decoherence parameters (κa, κb, and γ is 

Figure 2. The average charging power against scaled time with the same 
parameters as that are displayed in fig. 1
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examined in fig. 2(d). The range of average charging power exhibits a marginal decrease with 
increasing damping effects. This subtle reduction suggests that while damping has an impact, 
it does not drastically alter the charging power. The duration of the charging process remains 
stable across all cases, even with increasing numbers of damping parameters. This stability is 
observed for all two-mode charger parameters (κa = 0.4 and κb = 0.4) and the two quantum cells 
parameter (γ = 0.4). Despite the presence of damping, the charging period does not fluctuate 
significantly, ensuring a consistent charging cycle. The reduction in average charging power 
becomes slightly more apparent during the relaxation period until the completion of damping. 
This gradual decline highlights the persistent but manageable effect of environmental factors 
on the QB’s performance. These observations align with our results in fig. 1(d), where various 
damping levels and their impact on the average charging power are detailed.

Ergotropy

Ergotropy, a critical measure for evaluating the effectiveness of a QB [28, 29], sig-
nifies the maximum amount of stored energy available for work extraction at a specific time 
during the QB’s evolution (charging process). This quantity often deviates from the total stored 
energy due to locked energy within correlations, hindering its utilization for other purposes [14, 
20]. To comprehensively derive this parameter, the QB's Hamiltonian is the fundamental build-
ing block. The density matrix, representing the statistical state of the QB at time, t, is obtained 
by applying the partial trace operation the atomic state of the system, expressed:
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where h.r. is the hermitian conjugate of the off-diagonal elements. The spectral decomposition 
[30] for the Hamiltonian, H^

QB:
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where d is the number of levels in Hilbert space, and the eigenvalues are ordered such that  
ei < ei+1 associated to eigenstates |ei⟩, as well as the density matrix decomposition at time, t:
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with respect to ordered eigenvalues such that ri(t) > ri +1(t) with |ri(t)⟩ eigenstates. The eigen 
values of ρ^QB(t) are the roots of this equation ri 
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Now, the ergotropy [28, 31] is defined:
ˆ ˆˆ ˆ( ) = ( ( ) ) ( )QB QB QBt Tr t H Tr Hρ η− (21)

2
,

,

ˆ = ( ) ( )
d

j i j i i j
i j

r t e r t eη δ − 
 ∑ (22)

where

  1

ˆ = ( )
d

i i i
i

r t e eη
=
∑

is the passive state (neither absorbed nor extracted) energy and [η^, H^
QB] = 0

 
commutes with the 

Hamiltonian. Subsequently, the bound on the maximum and minimum extractable energy is 
given by 0 < ϵ(t) < E(t) . 

Figure 3 explores the impact of various Hamiltonian parameters on the maximum 
extractable energy (ergotropy) of the QB. As shown in fig. 3(a), ergotropy increases with in-
creasing values of λ1. This suggests that stronger coupling between the field and the atoms 
enhances the amount of work extractable from the QB. However, this enhancement comes at a 
cost: As λ1 increases from 0.05-0.1 and 1, the ergotropy behaviour exhibits progressively greater 
chaos and fluctuation. Figure 3(b) investigates the ergotropy of the QB, particularly the impact 
of varying the dipole-dipole interaction coupling (λ2). While the range of ergotropy remains 
unstable across different λ2 values, the average behaviour exhibits increasing chaos. Further-
more, the maximum values decrease as λ2 changes from 1 to 2 and 5. This indicates that while 
the overall extractable work may be maintained, the system’s stability deteriorates, leading to 
more erratic and unpredictable performance. The influence of varying Ising strengths along the 
z-axis (λ3) between the two battery cells is depicted in fig. 3(c). The ergotropy range exhibits 
a decreasing trend as λ3 varies from 1 -2 and 5, a more pronounced reduction compared to the 
x-axis interaction strength in fig. 3(b). Despite this decrease, the average number of fluctuations 
remains consistent. Interestingly, the system exhibits more chaotic behaviour compared to fig. 
3(b), suggesting a degree of stabilization despite the decreasing ergotropy range. Figure 3(d) 
explores the impact of environmental parameters, specifically analyzing the decay of ergotropy 
as the number of effective parameters increases. Our findings reveal that as the number of pa-
rameters rises, the decay of ergotropy tends to increase. However, for specific parameter combi-
nations (e.g., κa= 0.4, κb = 0.4), the variability in behaviour is less pronounced. Additionally, for 
an average value of γ = 0.4, the decay occurs more rapidly compared to previous states, albeit 
with less chaotic behaviour. These observations highlight the intricate interplay between envi-
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ronmental factors and the ergotropy of the QB system, underlining the importance of parameter 
optimization for enhancing energy extraction efficiency.

Figure 3. The ergotropy against scaled time with the same parameters as that are displayed in fig. 1

Energy fluctuation

Fluctuations of QB arise from the inherent discreteness of energy levels in quan-
tum systems. This discreteness leads to intrinsic variability in energy storage capacities due to 
quantum mechanical phenomena. A thorough understanding and effective management of these 
fluctuations are crucial for enhancing both the performance and reliability of QB across various 
applications. In conjunction with traditional metrics like average energy and optimal charging 
duration [24], comprehending the temporal dynamics of stored energy becomes paramount. 
The energy fluctuations at defined time intervals is given [25, 32]:

( ) ( )2 2ˆ ˆ( ) = (0) (0) (0) ( (0)QB QBt H Hψ δ ψ ψ δ ψΣ − (23)

where

  
†ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) = ( ) (0) , and ( ) =QB QB QB QB QBH H t H H t U H Uδ −

the Hamiltonian evolved in time in the Heisenberg representation according to H^:
2 3ˆ ˆ ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) = e e = [ , ] [ ,[ , ]] [ ,[ ,[ , ]]] .....

2! 3!
iHt iHt

QB QB QB QB QB QB
it itH t H H it H H H H H H H H H− + + + + (24)

Figure 4 explores energy fluctuation as a measure of stability for our QB. The analysis 
of QB fluctuations in fig. 4(a) reveals the influence of varying coupling strengths (λ1) between 
the charger and the cells. As λ1 increases (0.05, 0.1, 1), the range of fluctuations also expands, 
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leading to progressively more erratic energy behaviour. For a low coupling strength (λ1 = 0.05), 
the behaviour of fluctuations is minimal, indicating a regular energy transfer process. However, 
with increasing λ1 (0.1 and 1) and time, fluctuations become more pronounced, suggesting a 
transitionwards more complex interactions. Notably, while the fluctuation range increase be-
tween λ1 = 0.1 and 1 is modest, the system exhibits significantly greater chaos at λ1 = 1. This 
highlights that strengthening the coupling beyond a moderate level enhances the system’s cha-
otic nature without significantly expanding the fluctuation range. Figure 4(b) examines the 
influence of varying the interaction parameter (λ2) between the two cells. As λ2 takes on values 
of 1, 2, and 5, the range of energy fluctuations increases slightly, leading to moderately chaotic 
behaviour. The system’s energy dynamics become progressively more erratic with increasing 
λ2, but the fluctuation range differences between these values are relatively small compared to 
those observed for varying λ1 in fig. 4(a). This suggests that while λ2 affects stability, its impact 
is less pronounced than that of λ1. The effects of varying the interaction parameter (λ3 = 1, 2, 
and 5) between the two cells along the z-axis are shown in fig. 4(c). The function regularly 
osculate and relative chaotic behaviour as λ3 increases. The fluctuation range aligns with the 
energy dynamics depicted in fig. 1(c), where the energy behaviour remains consistent despite 
variations in λ3. These results suggest that λ3 has a large influence in reducing the energy fluctu-
ation compared to λ3 and λ2, contributing to a more predictable energy transfer process. Figure 
4(d) explores the impact of environmental parameters on the system’s stability, focusing on 
two-mode charger decay (κa = κb = 0.4) and quantum cell decay (γ = 0.4). The results indicate 
that energy fluctuations remain relatively stable in response to these decay effects. Notably, 
independent variations in the charger decay parameters (κa and κb) reveal significant differences 
in fluctuation behavior. However, the inclusion of the quantum cell decay parameter (γ = 0.4) 
shows only a slight change in the fluctuation range. Overall, this stability suggests that the sys-

Figure 4. The energy fluctuation against scaled time with the same 
parameters as that are displayed in fig. 1.
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tem exhibits resilience to moderate environmental decay effects, maintaining a consistent level 
of chaotic behavior.

Quantum speed limit

The concept of the quantum speed limit (QSL) imposes an inherent constraint on the rate 
at which a QB can be charged or discharged [33, 34]. This limitation arises from the fundamental 
principles of quantum mechanics, dictating the minimum time required for the system to transi-
tion between states. Unlike classical batteries, which could theoretically achieve instantaneous 
charging, QB necessitate a finite duration due to the complex interplay of energy levels within the 
system. Understanding this speed limit is crucial for refining charging protocols and optimizing 
the efficiency of these innovative energy storage devices. The formula of QSL is defined [35]:

1cos (0) ( )

min ( ), ( )

t

E t t

ψ ψ
τ

−   ≥
 
 ∑ (25)

Figure 5 illustrates the behavior of QSL for our quantum battery system. Notably, 
we initiate the time measurement at t = 0.1 since the QSL starts from infinity, indicating an in-
verse relationship with both quantum energy and quantum energy fluctuations, consistent with 
the definition provided in eq. (25). In fig. 5(a), we examine the QSL for varying values of the 
charger-battery cell interaction parameter, λ1, specifically for 0.05, 0.1, and 1. It is evident that 
as the values of λ1 decrease, the QSL increases significantly and exhibits chaotic behavior. This 
suggests a heightened sensitivity of the QSL to smaller λ1 values, reflecting more erratic energy 
storage dynamics. Figure 5(b) presents the QSL behavior concerning λ2, which represents the 
dipole interaction between the quantum cells. Here, the QSL shows minor differences in range 
and chaotic patterns for λ2 values of 1, 2, and 5. This indicates that λ2 has a less pronounced 
impact on the QSL compared to λ1, though some degree of chaos is still observable. Similarly, 
fig. 5(c) explores the QSL for λ3 values of 1, 2, and 5, revealing clearer differences compared 

Figure 5. The QSL against scaled time with the same parameters as that are displayed in fig. 1
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to λ2 but still exhibiting chaotic behavior. This highlights the nuanced influence of λ3 on the 
system’s dynamics, suggesting a more complex interaction pattern affecting the QSL. Figure 
5(d), we consider the effect of environmental noise on the QSL for different types of decay. As 
the system encounters increased environmental noise sources for both the charger modes and 
quantum cells, the QSL escalates dramatically and increase. However, the increasing rate in the 
presence of charger modes greater than when we take the noisy of quantum cell into account. 
This observation supports the inverse proportional relationship between energy storage, energy 
fluctuation, and the QSL. The increased noise induces greater fluctuations in the energy states, 
thereby elongating the time required to achieve optimal energy storage.

Conclusion

This study conducted a comprehensive investigation of quantum battery systems, focusing 
on the interplay between two-mode field charging, qubit interactions, and environmental effects. An 
analytical solution of the system enabled the examination of energy behavior in relation various pa-
rameters, including coupling strengths (charger-cell, dipole, Ising), and environmental decay rates. 
The analysis further explored stored energy, average charging power, ergotropy, energy fluctuations, 
and the QSL for these same parameter values. Our key findings reveal that charger-cell coupling 
exerts a significant influence on the stability and efficiency of the charging process. While higher 
coupling values lead to more chaotic energy behavior, they also facilitate smoother operation at 
optimal levels. The effects of dipole and Ising interactions between the cells themselves were more 
subtle but crucial for preventing instability and dissipating energy transfer inefficiencies. Environ-
mental parameters were found to play a critical role, with increased decay leading to more stable 
and predictable QSL, ultimately improving overall battery performance. Investigations into average 
charging power and kinetic entropy revealed how different parameter settings could optimize energy 
storage and retrieval, enhancing the practical utility of QB. The study of energy fluctuations provid-
ed insights into the inherent stability of the system, while QSL analysis emphasized the importance 
of fast and efficient energy transitions. Variations in parameters led to significant changes in QSL, 
with increased environmental noise causing larger fluctuations and longer charging times. This find-
ing highlights the inherent trade-off between QSL, energy storage capacity, and energy fluctuations, 
emphasizing the importance of balancing these factors for optimal performance. By exploring vari-
ous scenarios and parameter configurations, we identified strategies to improve the performance of 
QB, making them more efficient and reliable. These findings offer valuable insights into the field 
of quantum energy storage and illuminate potential avenues for future research. The comprehensive 
nature of this study contributes significantly to the scientific understanding of QB, providing a de-
tailed roadmap for enhancing the efficiency and stability of quantum energy storage systems.
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