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The manuscript’s primary goal is to utilize the decomposition Adomian approach to 
approximate solutions for a specific class of space-time fractional order heat model 
characterized by variable coefficients and appropriate initial values. This method 
allows for the computation of a power series representation of the solution without 
the need for linearization, assumptions about weak non-linearity, or reliance on 
perturbation theory. By employing mathematical software like MATHEMATICA or 
Maple, the Adomian formulas are employed to evaluate the resulting series solution. 
Furthermore, this approach shows promise in addressing various types of fraction-
al order non-linear mathematical physics models. The analysis reveals a remark-
able convergence between the outcomes derived from the decomposition method 
utilizing infinite series and the well-established results obtained when the fractional 
order equals one. This convergence underscores the efficacy and accuracy of the 
decomposition method in approximating solutions for fractional order equations, 
particularly when the fractional order approaches unity. Such alignment between 
the decomposition method’s results and those derived from conventional approach-
es bolsters confidence in its utility and reliability, further solidifying its standing as 
a valuable tool in the realm of fractional calculus and applied mathematics. Nota-
bly, the obtained results reveal that the solution’s profile changes based on varying 
fractional orders. This indicates that the shape of the solution wave can be altered 
without introducing additional parameters. These findings have far-reaching impli-
cations across numerous applications within specific contexts, suggesting the 	
potential for significant advancements in understanding and addressing complex 
physical phenomena governed by fractional order equations.
Key words: non-linear fractional models, conformable fractional derivative, 

variable coefficients wave and heat models

Introduction

In various domains spanning physics, engineering, mathematics, and beyond, a mul-
titude of physical and natural phenomena exhibit intricate behaviors that find successful repre-
sentation through the versatile frameworks of integer and fractional calculus. These non-linear 
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fractional models hold significant allure across an extensive spectrum of disciplines, extending 
their influence far beyond traditional scientific realms. From the complexities of financial mar-
kets to the intricacies of signal processing, from the dynamics of economies to the mysteries of 
celestial bodies in astronomy, fractional calculus offers invaluable insights and tools for analy-
sis. Moreover, its applications extend into diverse fields such as acoustics, medical processes, 
biological systems, fluid dynamics, genetics, and even the intricate workings of the human 
mind. This broad appeal underscores the profound impact and universal relevance of fractional 
calculus in elucidating and navigating the complexities of the natural and engineered world [1-3]. 

Exploring non-linear integer differential models has emerged as a prominent and dy-
namic area of research, capturing considerable attention and interest within the scientific com-
munity, as evidenced by numerous recent studies [4-10]. Amidst this landscape, one notable 
category of mathematical models that has garnered significant focus is that of linear fractional 
models, among which are the well-studied heat model [3, 6]. This model finds relevance in diverse 
real-world phenomena, ranging from the stresses induced by earthquakes to the propagation of 
non-homogeneous elastic waves within soils, both of which can be effectively described by wave 
equations. Examples include the gradual decay of extended current loops and various observ-
able phenomena in flat superconducting cables exposed to magnetic fields that vary over time [3, 6].

The fractional heat equation finds a wide range of applications across various fields 
due to its ability to describe the diffusion of heat over time and space. Some prominent applica-
tions include: Firstly, in heat conduction science the fractional heat equation is extensively used 
in engineering and physics to model heat conduction in materials. It describes how heat flows 
through solids, liquids, and gases, influencing phenomena such as temperature distributions in 
objects and thermal conductivity. Secondly, in thermal engineering and material science, the 
fractional heat equation is employed to analyze heat transfer processes, design cooling systems, 
and predict temperature distributions in various structures and devices. Thirdly, heat transfer 
in the Earth’s crust is a crucial aspect of geothermal exploration. The fractional heat equation 
is utilized to model the distribution of heat within the Earth’s subsurface, aiding in the assess-
ment of geothermal energy potential and the design of geothermal energy extraction systems. 
Fourthly, the fractional heat equation is utilized in atmospheric science to study temperature 
distributions in the atmosphere, ocean, and land surfaces. It plays a key role in numerical weath-
er prediction models and climate simulations, helping scientists understand climate dynamics 
and predict future climate scenarios. Fifthly, in the field of medical imaging, the fractional 
heat equation is applied in techniques such as magnetic resonance imaging and thermography 
to reconstruct images of internal body structures based on thermal properties and temperature 
distributions. These are just a few examples of the myriad applications of the fractional heat 
equation. Its versatility and effectiveness in modelling heat transfer phenomena have led to its 
widespread adoption in numerous scientific and engineering disciplines [7-14]. 

Since its emergence in the 1980's, the Adomian decomposition method has been show 
cased as a versatile tool for tackling a diverse array of mathematical challenges. Its applicability 
extends across both linear and non-linear realms, encompassing ordinary and partial differen-
tial equations as well as integral equations. One of its notable features is its ability to furnish 
solutions in the form of infinite series, often converging to highly accurate results. In recent 
years, researchers have further explored its potential by applying it to the study of vibrations in 
various structural and mechanical systems. This includes analyses of beams, strings, and other 
complex configurations operating in two or three spatial dimensions. The method’s adaptability 
and efficacy in addressing such multifaceted problems underscore its significance as a valuable 
computational technique in the realm of applied mathematics and engineering [15, 16].
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Over the past two decades, there has been a notable surge of interest among scientists 
and researchers in the quest for numerical and analytical solutions to fractional differential 
equations (FDE). This burgeoning field has attracted the attention of numerous scholars, each 
contributing unique insights and methodologies to tackle this challenging area of study. Many 
researchers have collectively contributed to advancing the understanding and techniques for 
solving FDE, paving the way for applications in various fields such as physics, engineering, 
biology, and finance. Their efforts have enriched the scientific community’s toolkit for tackling 
complex fractional order phenomena and have spurred further exploration and innovation in 
this rapidly evolving area of research [16-24].

Utilizing the constraints, Khalil et al. [25] introduced the conformable fractional de-
rivative (CFD):
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When setting α = 1 in the preceding equations, the non-integer derivative simplifies to 
the familiar integer derivative. The CFD exhibits the properties:
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where φ, ψ be two α is the differentiable functions of the dependent variable t and c – the arbi-
trary constant. Equations (5)-(7) were demonstrated by Khalil et al. [25]. The CFD of certain 
functions:
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In this paper, our focus lies in investigating approximate solutions for a specific cat-
egory of variable coefficients heat equation characterized by space and time-fractional orders, 
utilizing the concept of CFD. The methodology employed for constructing these solutions pre-
dominantly relies on the Adomian decomposition technique. By leveraging this approach, we 
aim to provide insights into the behavior and characteristics of the solutions to these FDE, 
shedding light on their dynamics and implications in various scientific and engineering con-
texts. Through our analysis, we endeavor to contribute to the advancement of understanding 
and techniques in the realm of fractional calculus and its applications.
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Adomian decomposition procedure

Without losing generality, we assume a space and time fractional variable coefficients 
heat equation given by a (3+1)-D initial boundary value problem (IBVP) with different frac-
tional orders α, β, γ, and δ of the form:

( ) ( ) ( ), , , , , ,
0 , 0 , 0 , 0, 0 , , , 1

s u vD M f s u v D M g s u v D M h s u v D M
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with the initial condition: 
( ) ( ), , ,0 , ,M s u v s u vϕ= (11)

The operator form of eq. (9) can be written:
( ) ( ) ( ), , , , , ,s u vL M f s u v D M g s u v D M h s u v D M

τ

ββ γγ δδ
α = + + (12)

with 

L
τ

α

α ατ
∂

=
∂

(13)

The inverse fractional operator Lατ
–1 is then written:
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Applying Lατ
–1 on eq. (12), we obtain: 
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The Adomian decomposition method stands as a powerful tool for obtaining analyti-
cal solutions to integer-order differential equations, playing a pivotal role across various scien-
tific disciplines. Notably, its versatility and effectiveness have been demonstrated in numerous 
applications, as evidenced by the works of Wazwaz and Goruis [26], among others. Through 
meticulous decomposition and iterative procedures, this method allows for the systematic ap-
proximation of solutions to differential equations, providing valuable insights into the behavior 
and dynamics of the underlying systems. As such, it remains a cornerstone technique in the 
arsenal of mathematical tools utilized by researchers and practitioners across a wide array of 
fields, facilitating advancements in theory and practical applications alike. The decomposition 
procedure depends on acting the solution M(s, u, v, τ) by the decomposition series:
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where the components M(s, u, v, τ) of the solution M(s, u, v, τ) will be computed recursively. 
After substituting eq. (16) into both sides of eq. (15), we have:
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The decomposition procedure determines the zeroth component M0(s, u, v, τ) through 
all terms stemming from the initial condition and integrating the source term, the Adomian 
decomposition procedure formally introduces the use of the recursive relation compute the 
components Mn(s, u, v, τ), n ≥ 0 of the solution M(s, u, v, τ):
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subsequently, we can frequently calculate every component of ∑∞
n=0 Mn. Thus, the series repre-

sentation of Ms solution can be easily articulated. Notably, it has been noted that the iterative 
solution rapidly converges to the exact solution, assuming it exists. 

It is worth noting that the arbitrary selection of fractional orders α, β, γ, and δ offers 
a considerable degree of flexibility and may lead to the discovery of more intricate structures 
within the models. This flexibility allows us to tailor the models to better match the physical 
phenomena under consideration, potentially leading to more accurate and insightful explana-
tions. Additionally, the series solution obtained by incorporating only the initial conditions 
highlights an intriguing aspect of the problem-solving process. While the given boundary con-
ditions are instrumental for validating the solution, the fact that the series solution emerges 
primarily from the initial conditions underscores their importance in shaping the solution tra-
jectory. This approach underscores the significance of carefully considering initial conditions in 
modelling and analyzing complex systems, as they can profoundly influence the behavior and 
outcomes of the solutions obtained.

In the subsequent sections, we employ the outlined procedure to address particular 
instances of time-fractional heat equation. By applying the methodology described earlier, we 
aim to obtain solutions tailored to these specific equations. Through this process, we seek to 
elucidate the behavior and characteristics of these FDE, shedding light on their dynamics and 
implications within the context of heat phenomena. This targeted approach enables us to ex-
plore the unique features of time-fractional equations and their significance in various scientific 
and engineering domains.

Variable coefficients heat equations

We utilize the aforementioned procedure to tackle the heat equations characterized 
by four space and time fractional variable coefficients. By applying the methodology outlined 
earlier, we aim to derive solutions tailored specifically to these equations. This implementation 
allows us to explore the behavior and properties of heat propagation in systems characterized 
by such fractional variable coefficients. Through this analysis, we seek to gain insights into the 
intricate dynamics of heat transfer phenomena, particularly in contexts where the coefficients 
exhibit spatial and temporal variability. 

First application

We first consider the (1+1)-D heat time fractional IBVP equation:
21 , 0 1, 0

2 sD M s D M sα ββ
τ τ= < < > (19)

with the boundary conditions:
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at the initial value:
2( ,0)M s s β= (21)

Equation (19) has the following form:
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Applying the inverse operator Lατ
–1 to eq. (22) while considering the initial value yields:
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Substituting eq. (16) for M into eq. (23) yields:
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so, the recurrence relation is given:
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the series form of the solution is given
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When α = β = 1, eq. (26) has the form:
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Wazwaz and Goruis [28] give the same results. 

Figure 1. Represented the solution eq. (26) when α = β = 1, 0.9, 0.8, 0.7 and (b) the cross-section at s = 10

Figure 1 illustrates the evolutionary behavior of the solution eq. (26) when  
α = β at different values of the fractional orders, the pink layer when α = β = 1, the red layer 
when α = β = 0.9, the blue layer when α = β = 0.8, and the green layer when α = β = 0.7. Fig-
ure 1(b) is the cross-section at s = 10. In fig. 1, we observe a distinct shift in solution shape as 
we alter the fractional order. This dynamic variation in solution shape, driven by changes in 
fractional order, holds significant implications for the development of robust signal processing 
methodologies tailored to handle the intricate nature of real-world signals. Signals encountered 
in various domains, including biomedical, seismic, and financial sectors, often exhibit non-sta-
tionary behavior, wherein their statistical attributes evolve over time. Conventional techniques 
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relying on integer-order differential equations may fall short in capturing the intricate dynam-
ics of such signals adequately. Embracing fractional-order dynamics equips signal processing 
methodologies with enhanced capabilities to effectively model and analyze non-stationary sig-
nals. Fractional calculus serves as a potent tool for characterizing signal memory and long-
range dependence characteristics, paving the way for the creation of more precise models and 
algorithms. These advancements contribute significantly to signal denoising, feature extraction, 
and classification endeavors, enabling more robust and accurate signal processing solutions.

Second application

We consider the (2+1)-D space and time fractional IBVP:
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at the initial value:
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the decomposition series form of eq. (31) is given
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thus the recurrence relation is written:
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Hence the series representation of the solution is expressed:
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when α = β = 1, eq. (34) turns to the integer version
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Third application

We assume the (2+1)-D space and time fractional IBVP as the third application with 
different boundary and initial conditions:
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thus, the recurrence relation will be provided
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Therefore, the solution in series form is expressed:
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When α = β = γ = 1, eq. (42) has the form:
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Fourth application

We contemplate the IBVP within the (3+1)-D space and time fractional framework:
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with the boundary values:
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( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

4 4

4 4

4 4

0, , , 0, 1, , , e 1

,0, , 0, ,1, , e 1

, ,0, 0, , ,1, e 1

M u v M u v u v

M s v M s v s v

M s u M s u s u

α

α

α

τβ γ δγ δ α

τβ γ δβ δ α

τβ γ δβ γ α

τ τ

τ τ

τ τ

+ +

+ +

+ +

 
 = = −
 
 
 
 = = −
 
 
 
 = = −
 
 

(44)

and the initial value:
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the solution in series form is expressed
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When α = 1, eq. (46) has the form:
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Conclusions

This work show cased the versatility of the Adomian decomposition technique for an-
alytically solving space and time FDE featuring variable coefficients. We introduced a straight-
forward and effective scheme for tackling such equations, demonstrating its applicability across 
a range of scenarios. By leveraging the CFD, we were able to address functions exhibiting dif-
ferentiability as well as those that are non-differentiable. This flexibility enables the method to 
be applied to systems characterized by both continuous and non-continuous media, expanding 
its utility in modelling and analyzing complex phenomena across various domains.

The arbitrariness of fractional orders introduces a wide range of possibilities and enables 
the representation of more complex structures. Each fractional order value corresponds to a dis-
tinct surface, thereby influencing the behavior of the solution significantly. Consequently, even 
small changes in the non-integer derivative order can lead to noticeable variations in the solution’s 
form. Remarkably, these alterations occur without necessitating modifications to the underlying 
properties of the medium. This observation underscores the sensitivity of FDE to changes in 
fractional order values and highlights the potential for tailoring solution behaviors to suit specific 
modelling needs without altering the intrinsic characteristics of the medium being studied.
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