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Scatterometry is a technique used to transmit radio or microwaves to examine 
different geophysical properties, wind speed, and direction. Precise and rapid 
weather predictions become essential in several applications in assisting planning 
and management in response to weather conditions. At the same time, timely wind 
speed prediction gains considerable attention in several economical, business, and 
management areas. With the consideration of wind speed as an arbitrary variable, 
precise wind speed prediction using machine learning and deep learning models 
can be established. With this motivation, this study develops a short-term wind 
speed prediction using search and rescue optimization with deep belief network 
(STWSP-SRDBN) model. To accomplish accurate wind speed prediction, the ST-
WSP-SRDBN method initially pre-processes the weather data using min-max nor-
malization. Additionally, the STWSP-SRDBN model utilizes DBN model to predict 
the weather data. Moreover, the SRO algorithm is utilized to fine tune the hyper-
parameters related to the DBN approach. The presented STWSP-SRDBN method 
makes use of Spatio-temporal multivariate multi-dimensional historical weather 
data to learn new representations utilized for wind forecasting. The experimental 
validation of the STWSP-SRDBN method is tested using a set of weather data and 
the outcomes are investigated under numerous aspects. The experimental results 
indicated the enhanced outcomes of the STWSP-SRDBN method over recent state 
of art methods. 
Key words: wind speed prediction, search optimization, prediction models, 

time-series forecasting, hyperparameter tuning, deep learning 

Introduction

 Scatterometry is a commonly known method under which the transmission of micro 
or radio waves takes place for measuring several wind speed, directions, and geophysical prop-
erties. The waves which are transmitted will spread towards the antenna once after striking a 
medium or a surface [1]. The amplitude of such backscattered pulses is examined to measure 
the favorable output units. The usual applications of scatterometry are in wind analysis [2]. 
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Wind scatterometers may extract information regarding the wind velocity over ocean surfaces. 
For establishing this, wind scatterometers transfer radar pulses which scatter back upon striking 
the surface of the ocean [3]. The backscattered signals have variations depending on speed of 
the wind and roughness of the ocean. Bragg scattering is the main component in the extraction 
of direction wind and speed of the wind meanwhile the radiation is dispersed in every direc-
tion’s distinct reflection from flat surfaces. Scatterometers dimensions have to sustain a max-
imal range of incidence angle and Braggs scattering is reliable on it [4]. Wind scatterometers 
perform an important role in wave and weather predicting and in the examination of climate 
models. Future weather patterns might be forecasted with the assimilation of scatterometer data 
into atmospheric estimating model. There exist several remote sensing methods. Out of these, 
scatterometry is regarded as a special method and it has the capability of remotely measuring 
surface of the wind speed and direction through ocean surfaces [5]. This provides predictors 
worthy information regarding cyclones at the initial phase of development. 

 In general, the researchers differentiated the prediction methods applied in the wind 
speed predicting domain into three major groups they are, artificial intelligence methods, phys-
ical approaches, and data-driven models depending on statistical theory [6]. The physical meth-
odology is termed the numeric weather prediction technique a common information-driven 
method that involves a sequence of physical information like humidity, atmospheric pressure, 
obstacles, roughness, wind direction, temperature, etc. [7]. In comparison the physical method-
ology, the statistical models always had a priority for mining the implicit data which is available 
in the historical wind speed that becomes very familiar by the right of the minimal information 
needed. Over the past few years, the speedy advancement of artificial intelligence technologies 
has drastically brought forth a progression in wind speed estimation [8]. Assuming wind speed 
as a random parameter, its precise estimation over the duration will earn superior outcomes for 
the wind turbine operator. Machine learning (ML) has the capability of estimating environmen-
tal and hydrological method variables precisely [9]. The ML contribution is very significant in 
wind speed estimation, and choosing suitable ML model is highly significant in order to get 
precise outcomes. The ML methods i.e. extreme learning machine (ELM), Gaussian process 
regression (GPR), support vector machine (SVM), fuzzy logic (FL), and ANN are extensively 
utilized for this purpose. Currently, the implementation of hybrid ML tools for wind speed 
estimation has gained much more impetus amongst the researchers since it owns the benefits 
of every method [10]. This article focuses on the design of a short-term wind speed prediction 
using search and rescue optimization with deep belief network (STWSP-SRDBN) model. The 
STWSP-SRDBN method firstly pre-processes the weather data by means of min-max normal-
ization. Also, the STWSP-SRDBN method utilizes DBN model to predict the weather data. 
Moreover, the SRO algorithm is utilized to fine tune the hyperparameters related to the DBN 
approach. The presented STWSP-SRDBN model makes use of Spatio-temporal multivariate 
multi-dimensional historical weather data to learn new representations utilized for wind fore-
casting. The experimental validation of the STWSP-SRDBN method is tested with a set of 
weather data and the results are investigated under several aspects. 

Literature review

Valsaraj et al. [11] examined the perception of applying one time trained ML pre-
diction method for wind speed predicting individual location and time. It is discovered in the 
investigation that ML techniques trained by the preceding wind speed dataset from one posi-
tion that can predict wind speed efficiently at another location of interest within an extensive 
geographical area. Hur [12], the authors presented a wind speed predictive technique encom-
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passes primarily two-phases, prediction, and estimation. Firstly, estimation is conducted by 
an  extended kalman filter, i.e., developed according to non-linear rotor and 3-D wind field 
models. Subsequently, prediction can be carried out in two major stages, ML and extrapolation.  
Demolli et al. [13], the authors performed a long-term wind power prediction on the basis of 
wind speed dataset with five ML techniques. Then, presented a technique on the basis of ML 
approaches for forecasting wind power value effectively. Then, carried out different researches 
for revealing the efficiency of ML approaches. 

Li and Jin [14], a hybrid model architecture based on combinatory models has 
been developed and effectively adapted to build the predictive ranges of the upcoming 
wind speed. Feature selection method is designed for determining the appropriate mode of 
real time sequence and the optimum input formation of the algorithm, whereas the optimi-
zation predicting model is employed for modelling the sequential wind speed on the basis 
of the multi-objective optimization and ML techniques, later the compromise solution of 
Pareto front is designated using min-max approach. Zhu et al. [15] established a technique 
for forecasting wind speed with spatiotemporal correlations, that is, the prediction deep 
convolution neural network (PDCNN). The algorithm is an integrated architecture that 
integrates convolution neural network (CNN) and a multi-layer perceptron (MLP). At first, 
the spatial feature is extracted by CNN situated at the bottom of the algorithm. Next, the 
temporal dependencies amongst this spatial feature extraction are taken using the MLP. Ac-
cordingly, the temporal and spatial relationships are taken using PDCNN. At last, PDCNN 
generates the forecasted wind speed with the learned spatiotemporal relationship. Li [16], 
a two-phase technique has been designed for stronger spatio-temporal approximations of 
wind speed at a higher resolution. The presented technique comprises geologically weight-
ed ensemble ML (Phase 1) and downscales according to weather-related re-analysis dataset 
(Phase 2). The geologically weighted ML technique depends on three basic learners, that is, 
Autoencoder-based random forest, deep residual network, and XGBoost, also it integrates 
heterogeneity and spatial autocorrelation increase the ensemble prediction. Luo et al. [17], 
the authors proposed a wind-speed predicting technique based on two kinds of ML methods 
(multi-objective and decomposition-ensemble optimization) that address the chaotic and 
non-linearity features of sequential wind-speed. 

The proposed model

In this study, a STWSP-SRDBN model has been developed for effective wind speed 
prediction. The suggested model encompasses a three-stage process. At the initial stage, the 
min-max normalization approach is utilized to pre-process the input weather data. Next, the 
STWSP-SRDBN model utilizes DBN model 
to predict the weather data. Finally, the SRO 
algorithm is utilized to fine tune the hyperpa-
rameters related to the DBN model. Figure 1 
shows the workflow of proposed model.

Stage I: Data pre-processing

Primarily, the min-max normalization 
approach is utilized to pre-process the input 
weather data. Data normalization is commonly 
utilized to attain enhanced results by any ML 
model. The feature values range from low to Figure 1. Workflow of STWSP-SRDBN model

https://www.sciencedirect.com/topics/engineering/extended-kalman-filter
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high. Therefore, it becomes essential to scale the features to unit variance using min-max nor-
malization approach. It is typically leveraged for computing the similarity degree among points. 
Consider A as data that should be mapped from dataset ranges from Amin to Amax using:

min
normalized

max min

A AA
A A

−
=

−
(1)

The utilization of min-max normalization ensured that features are exacted into iden-
tical scales.

Stage II: The DBN based prediction model

Once the input data is pre-processed, the STWSP-SRDBN model utilized the DBN 
model to predict the weather data [18]. The DBN is a kind of deep neural network with large 
amounts of hidden units and many hidden layers. The standard DBN is equal to stacked restrict-
ed boltzmann machine (RBM) model using output layer. The DBN exploits a faster, greedy 
unsupervised learning technique for RMB training and a supervised fine‐tuning technique to 
alter the network by labeled dataset. Every RBM comprises a hidden layer h and visible lay-
er v, interconnected with undirected weight. For stacked RBM in the DBN, hidden unit of 
single RBM is regarded the visible unit of the following RBM. The variable set of a RMB is  
θ = (w, b, a), where wij indicates the weight between n i and hj. The bi and bj represent the bias. 
A RBM determines its energy:
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and the joint likelihood distribution of v and h is represented:
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and the marginal likelihood distribution of v is given:
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In order to attain the optimum, θ, for single dataset vector, v, the gradient of log‐prob-
ability can be computed:
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where ⟨⋅⟩ represent the expectation under the distribution determined by the subscript, which 
can either refer to the data distribution or the model distribution.
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As there is no link between the units in the same layer, ⟨⋅⟩data is easier to attain by eval-
uating the conditional likelihood distributions:

( )
1( , )

1  exp 

1( , )
1  exp 

j
ij i ji

i

ij j ij

p h v
w a

p h
w h b

θ
ν

ν θ

=
+ − −

=
 + − − 
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∑

∑
(8)

The activation function is sigmoid func-
tion. For ⟨⋅⟩model the contrastive divergence (CD), 
learning model was utilized for reconstruction 
minimalize the dissimilarity of two Kullback‐
Leibler (KL) divergences. The CD learning is 
found to be efficiently practical and minimizes 
computation costs than standard Gibbs sampling 
model. The weight in DBN layer is trained by 
unlabeled dataset with the aforementioned faster 
and greedy unsupervised method. In this work, 
the fully connected layer was designated to im-
plement as the top layer and uses the sigmoid ac-
tivation function. For predictive purposes, a su-
pervised layer should be added above the DBN 
to modify the learned feature by labelled dataset 
with an up‐down fine-tuning method. The struc-
ture of DBN model is given in fig. 2. 

Stage III: The SRO based hyperparameter tuning

In the last stage, the SRO method is utilized to fine tune the hyperparameters related 
to the DBN model. The location of the lost human is the most important objective of the search 
and rescue optimization method for optimization problems, and the consequence of the clue 
originating in this location describes the cost of solution. Now, the best approach discloses the 
best location with further clues [19]. Individuals search for best possible solution through the 
searching technique when leaving some hints. However, the search place for the individual is 
kept in a situation matrix (matrix X) using the equal size of memory matrix and the left clue 
was kept in a memory matrix (matrix M), n is the individual quantity in a group, and n × d de-
termines the variable problem:
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In eq. (9), consider random clues among the attained clues, the searching direction 
can be obtained:

Figure 2. Structure of DBN model
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( ) ,  i j ksd X C k i= − ≠ (10)

where k indicates random values amongst 1 and 2N, X, and Ck correspondingly describes the 
location of ith human and the kth clue. The presented algorithm makes use of binomial crossover 
operators to employ the limitation. Furthermore, the clue has great consequences than that of 
existing clue, a region was searched for spi direction. Or else, search for the place of the present 
location in the spi is constant [20]. Hence, the novel location of jth parameter can be illustrated 
as ith human:
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where ck,j is the signifies location of jth variable and the clue kjr, r1, and r2 correspondingly char-
acterizes three arbitrary integer lies in the range of [0, 1], [1, d], and [–1, 1]. The next phase is 
about individuals. The upgraded position using the ith human is obtained by using:

( )'
3    i j k mX X r C C= + − (13)

where r3 is the uniform distribution value lies in the range of [0, 1], m and k are the two arbi-
trary integers within [1, 2N] and i ≠ k ≠ m. When the solution is placed outside the border the 
subsequent equation can be employed:
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where j = 1, 2, ..., d is the minimal and maximal threshold for the parameter can be expressed as  
Xj

miin and Xj
max correspondingly. Based on the process, the human lost candidate is searched 

according to the formerly described method. Once the amount of cost functions in X ′ i(f(X ′ i)) 
scenario is greater than the current one (f (Xi)) the prior position (X) could be saved in a ran-
dom place in the memory matrix, M, or else, the situation is left and the memory hasn't been 
upgraded:

( )
( ) ( )

( )
 if             

        otherwise
j i i

n i
n i

X f X f X
M X

M X

′ >= 

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where n is the random integer that lies in the interval of [1, N] and Mn – the position of n clue 
numbers in the memory matrix. Once a person during his quest does not discover a prominent 
clue, it leaves a novel one with the current place. For, usn describes the unproductive searching 
number we have:

( ) ( )1 if 
0 otherwise

i i i
i

usn f X f X
usn

′ + <= 
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(16)
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If usn is higher than MU, it moved to another place in the space solution. The SRO 
algorithm derives a fitness function with the minimization of mean square error (MSE), which 
can be formulated:

( )2
1 1

1 ML
i i
j j

j i

MSE y d
T = =

= −∑∑ (17)

where M and L are the define outcomes of the layers and data, correspondingly. Also, y i j and d  ij 
implies attained and appropriate magnitude for jth. Units in the output layer of network at time, 
t, respectively.

Experimental validation

In this section, the prediction outcomes of the STWSP-SRDBN model is investigat-
ed under three distinct cities. The results are assessed in terms of two measures namely mean 
absolute error (MAE) and MSE. Table 1 and fig. 3 provide a detailed comparative predictive 
outcome of the STWSP-SRDBN method with recent methods [21] on three cities with 6 hours, 
12 hours, 18 hours, and 24 hours prediction on Dataset-1. 

Table 1. The MAE Analysis of STWSP-SRDBN model with existing models on Dataset-1

MAE – Dataset-1

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

6 hours 12 hours

2-D 1.221 1.182 1.263 1.222 1.626 1.630 1.498 1.585

2-D-Attention 1.197 1.257 1.166 1.207 1.588 1.503 1.565 1.552

2-D-Upscaling 1.241 1.209 1.168 1.206 1.598 1.483 1.560 1.547

3-D 1.265 1.155 1.183 1.201 1.472 1.493 1.562 1.509

Multidimensional 1.195 1.203 1.189 1.196 1.451 1.530 1.471 1.484

STWSP-SRDBN 1.105 1.112 1.125 1.114 1.382 1.421 1.405 1.403

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

18 hours 24 hours

2-D 1.779 1.791 1.593 1.721 1.888 1.774 1.933 1.865

2-D-Attention 1.673 1.818 1.654 1.715 1.728 1.913 1.943 1.861

2-D-Upscaling 1.574 1.691 1.713 1.659 1.927 1.843 1.806 1.859

3-D 1.588 1.62 1.696 1.635 1.751 1.743 1.944 1.813

Multidimensional 1.605 1.672 1.583 1.620 1.804 1.751 1.741 1.765

STWSP-SRDBN 1.504 1.546 1.516 1.522 1.659 1.678 1.67 1.669
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Figure 3. Comparative MAE assessment of STWSP-SRDBN model on Dataset-1; 
(a) 6 hours, (b) 12 hours, (c) 18 hours, and (d) 24 hours

The results indicated that the STWSP-SRDBN technique has accomplished en-
hanced performance over other methods. For example, with 6 hours duration and city-1, the 
STWSP-SRDBN model has offered reduced MAE of 1.105 whereas the 2-D, 2-D-Attention, 
2-D-Upscaling, 3-D, and multidimensional models have reached increased MAE of 1.221, 
1.197, 1.241, 1.265, and 1.195, respectively. Similarly, with 12 hours duration and City-1, the 
STWSP-SRDBN model has provide lower MAE of 1.382 whereas the 2-D, 2-D-Attention, 
2-D-Upscaling, 3-D, and Multidimensional models have attained higher MAE of 1.626, 1.588, 
1.598, 1.472, and 1.451, respectively.

An average MAE inspection of the ST-
WSP-SRDBN method with existing models on 
different time durations and Dataset-1 is giv-
en in fig. 4. The figure indicated that the ST-
WSP-SRDBN approach has gained lower MAE 
values under all aspects. For example, with  
6 hours prediction, the STWSP-SRDBN 
method has provided reduced average MAE 
of 1.114 whereas the 2-D, 2-D-Attention, 
2-D-Upscaling, 3-D, and multidimensional 
models have obtained increased average MAE 
of 1.222, 1.207, 1.206, 1.201, and 1.196, re-
spectively. Eventually, with 12 hours predic-
tion, the STWSP-SRDBN model has demon-
strated least average MAE of 1.403 whereas 

Figure 4. Average MAE assessment of 
STWSP-SRDBN model on Dataset-1
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the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and Multidimensional models have exhibited in-
creased average MAE of 1.585, 1.552, 1.547, 1.509, and 1.484, respectively.

Table 2 and fig. 5 offers an extensive comparative MSE predictive outcomes of the 
STWSP-SRDBN model on three cities with 6 hours, 12 hours, 18 hours, and 24 hours predic-
tion on Dataset-1. The experimental values demonstrated that the STWSP-SRDBN method has 
reached improved outcomes over other approaches. For instance, with 6 hours duration and 
City-1, the STWSP-SRDBN model has exhibited least MSE of 2.187 whereas the 2-D, 2-D-At-
tention, 2-D-Upscaling, 3-D, and multidimensional models have accomplished improved MSE 
of 2.518, 2.659, 2.548, 2.576, and 2.251, respectively. Likewise, with 12 hours duration and 
City-1, the STWSP-SRDBN model has resulted to minimal MSE of 3.947 whereas the 2-D, 
2-D-Attention, 2-D-Upscaling, 3-D, and Multidimensional models have demonstrated maxi-
mum MSE of 5.350, 5.327, 5.599, 5.311, and 4.923, respectively.

Table 2. The MSE analysis of STWSP-SRDBN model with existing models on Dataset-1

MSE – Dataset-1

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

6 hours 12 hours
2-D 2.518 2.688 2.530 2.579 4.388 4.485 4.215 4.363

2-D-Attention 2.659 2.227 2.550 2.479 4.694 3.995 4.199 4.296
2-D-Upscaling 2.548 2.577 2.301 2.475 4.009 4.554 4.204 4.256

3-D 2.576 2.301 2.274 2.384 4.265 3.915 4.517 4.232
Multidimensional 2.251 2.447 2.291 2.330 4.654 4.116 3.905 4.225
STWSP-SRDBN 2.187 2.158 2.222 2.189 3.947 3.846 3.854 3.882

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

18 hours 24 hours
2-D 5.350 5.483 5.589 5.474 5.735 5.765 5.681 5.727

2-D-Attention 5.327 5.519 5.330 5.392 5.764 5.482 5.835 5.694
2-D-Upscaling 5.599 5.361 5.102 5.354 5.981 5.560 5.438 5.660

3-D 5.311 5.146 5.362 5.273 5.459 5.539 5.754 5.584
Multidimensional 4.923 5.025 5.434 5.127 5.428 5.512 5.501 5.480
STWSP-SRDBN 4.845 4.956 5.035 4.945 5.362 5.410 5.384 5.385

An average MSE examination of the STWSP-SRDBN model with current mod-
els on diverse time durations and Dataset-1 is given in fig. 6. The figure specified that the  
STWSP-SRDBN model has extended inferior MSE values under all aspects. For instance, with 
6 hours prediction, the STWSP-SRDBN model has delivered reduced average MSE of 2.189 
whereas the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and Multidimensional models have got-
ten increased average MSE of 2.579, 2.479, 2.475, 2.384, and 2.330, respectively. Finally, with 
12 hours prediction, the STWSP-SRDBN model has established minimum average MSE of 
3.882 whereas the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and Multidimensional models 
have showed improved average MSE of 4.363, 4.296, 4.256, 4.232, and 4.225, respectively.

A comprehensive comparative MAE predictive results of the STWSP-SRDBN model 
on 3 cities with 1 hours, 2 hours, 3 hours, and 4 hours prediction on Dataset-2 is demonstrated 
in tab. 3 and fig. 7. The outcomes denoted that the STWSP-SRDBN model has resulted to 
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Figure 5. Comparative MSE assessment of STWSP-SRDBN model on Dataset-1; 
(a) 6 hours, (b) 12 hours, (c) 18 hours, and (d) 24 hours

Table 3. The MAE Analysis of STWSP-SRDBN model with existing models on Dataset-2
MAE – Dataset-2

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

1 hours 2 hours
2-D 7.930 7.650 7.990 7.857 8.990 8.150 8.710 8.617

2-D-Attention 7.840 7.510 7.940 7.763 8.260 8.910 8.570 8.580
2-D-Upscaling 7.590 7.870 7.680 7.713 8.510 8.810 8.360 8.560

3-D 7.600 7.510 7.810 7.640 8.550 8.760 8.240 8.517
Multidimensional 7.590 7.710 7.540 7.613 8.140 8.160 8.870 8.390
STWSP-SRDBN 7.533 7.442 7.484 7.486 8.068 8.087 8.173 8.109

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

3 hours 4 hours
2-D 9.170 9.550 9.640 9.453 10.090 10.070 9.360 9.840

2-D-Attention 9.260 9.690 9.350 9.433 10.340 9.500 9.430 9.757
2-D-Upscaling 9.390 9.120 9.320 9.277 9.080 9.180 10.600 9.620

3-D 9.020 9.150 9.650 9.273 9.070 10.060 9.670 9.600
Multidimensional 9.010 9.370 9.020 9.133 9.250 9.030 9.870 9.383
STWSP-SRDBN 8.951 9.053 8.967 8.990 8.996 8.980 9.301 9.092
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better results compared to existing techniques. 
For instance, with 1 hour duration and City-
1, the STWSP-SRDBN model has resulted to 
lower MAE of 7.533 whereas the 2-D, 2-D-At-
tention, 2-D-Upscaling, 3-D, and multidimen-
sional models have gained higher MAE of 
7.930, 7.840, 7.590, 7.600, and 7.590, respec-
tively. Furthermore, with 2 hours duration and 
City-1, the STWSP-SRDBN model has ac-
complished decreased MAE of 8.068 whereas 
the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, 
and Multidimensional models have obtained 
increased MAE of 8.990, 8.260, 8.510, 8.550, 
and 8.140, respectively.

An average MAE review of the STWSP-SRDBN model with recent approaches on 
several time durations and Dataset-2 is given in fig. 8. The experimental values denoted that the 
STWSP-SRDBN method has resulted to least MAE values under all aspects. For instance, with 
2 hours prediction, the STWSP-SRDBN model has decreased average MAE of 8.109 whereas 
the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and multidimensional approaches have reached 
improved average MAE of 8.617, 8.580, 8.560, 8.517, and 8.390, respectively. At the same 
time, with 4 hours prediction, the STWSP-SRDBN model has demonstrated least average MAE 
of 9.092 whereas the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and multidimensional models 
have showed superior average MAE of 9.840, 9.757, 9.620, 9.600, and 9.383, respectively.

Figure 7. Comparative MAE assessment of STWSP-SRDBN model on Dataset-2; 
(a) 1 hours, (b) 2 hours, (c) 3 hours, and (d) 4 hours

Figure 6. Average MSE assessment of
STWSP-SRDBN model on Dataset-1
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Table 4 and fig. 9 depicts a brief comparative MSE predictive outcomes of the ST-
WSP-SRDBN model on three cities with 1 hours, 2 hours, 3 hours, and 4 hours prediction 
on Dataset-2. The obtained outcomes point out that the STWSP-SRDBN model has got-
ten better outcomes over other methods. For example, with 1 hours duration and city-1, the  
STWSP-SRDBN model has showed least MSE of 98.810 whereas the 2-D, 2-D-Attention, 
2-D-Upscaling, 3-D, and multidimensional models have accomplished enhanced MSE of 
109.000, 108.420, 106.460, 109.250, and 101.090, respectively. Equally, with 2 hours duration 
and city-1, the STWSP-SRDBN model has resulted to minimal MSE of 142.520 whereas the 
2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and multidimensional models have revealed maxi-
mum MSE of 147.340, 147.730, 146.010, 144.200, and 146.580, respectively.

Table 4. The MSE analysis of STWSP-SRDBN model with existing models on Dataset-2
MSE – Dataset-2

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

1 hours 2 hours
2-D Model 109.00 108.45 110.85 109.43 147.34 148.78 148.060 148.06

2-D-Att. Model 108.42 114.10 101.62 108.05 147.73 144.25 147.940 146.64
2-D-Upscaling 106.46 110.20 101.59 106.08 146.01 144.81 148.570 146.46

3-D Model 109.25 102.95 104.12 105.44 144.20 146.72 148.370 146.43
Multidimensional 101.09 108.37 102.28 103.91 146.58 145.54 145.500 145.87
STWSP-SRDBN 98.81 101.70 99.57 100.03 142.52 142.11 143.440 142.69

Methods
City-1 City-2 City-3 Average City-1 City-2 City-3 Average

3 hours 4 hours
2-D 182.07 184.18 177.27 181.173 208.62 207.62 204.710 206.98

2-D-Attention 181.01 172.66 188.69 180.787 205.18 207.70 207.290 206.72
2-D-Upscaling 177.01 182.18 182.84 180.677 206.71 207.59 205.410 206.57

3-D 179.75 172.78 187.72 180.083 205.73 208.71 204.990 206.48
Multidimensional 176.11 177.75 176.78 176.880 203.81 203.12 203.430 203.45

STWSP-SRDBN 174.70 170.27 174.31 173.093 202.08 200.89 201.470 201.48

Finally, an average MSE study of the STWSP-SRDBN method with existing models 
on dissimilar time durations and Dataset-2 is given in fig. 10. The figure portrayed that the ST-
WSP-SRDBN model has decreased MSE values under all aspects. For instance, with 1 hours 

Figure 8. Average MAE 
assessment of STWSP-SRDBN 
model on Dataset-2
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prediction, the STWSP-SRDBN model has offered minimal average MSE of 100.027 whereas 
the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and multidimensional models have obtained in-
creased average MSE of 109.433, 108.047, 106.083, 105.440, and 103.913, respectively. At 
last, with 2 hours prediction, the STWSP-SRDBN model has demonstrated least average MSE 
of 142.690 whereas the 2-D, 2-D-Attention, 2-D-Upscaling, 3-D, and multidimensional mod-
els have exhibited increased average MSE 148.060, 146.640, 146.463, 146.430, and 145.873, 
respectively.

Figure 11 showcases a detailed predictive result analysis of the STWSP-SRDBN 
model with 1 hours prediction. The figure specified that the STWSP-SRDBN method has ac-
complished effectual predictive values under 
all-time duration. It is noted that the difference 
between the actual and predictive values are 
considerably low.

Figure 12 shows an extensive predictive 
examination of the STWSP-SRDBN technique 
with 4 hours prediction. The figure stated that 
the STWSP-SRDBN method has proficient 
predictive values under all-time durations. It is 
observed that the variation between the actual 
and predictive values is significantly low. The 
aforementioned tables and figures clearly point-
ed out the supremacy of the STWSP-SRDBN 
model over recent approaches.

Figure 9. Comparative MSE assessment of STWSP-SRDBN model on Dataset-2; 
(a) 1 hours, (b) 2 hours, (c) 3 hours, and (d) 4 hours

Figure 10. Average MSE assessment of 
STWSP-SRDBN model on Dataset-2
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Conclusion 

In this study, a STWSP-SRDBN model has been developed for effective wind speed 
prediction. The suggested model encompasses a three-stage process. At the initial stage, the 
min-max normalization approach is utilized to pre-process the input weather data. Next, the 
STWSP-SRDBN model utilizes DBN model to predict the weather data. Finally, the SRO al-
gorithm is utilized to fine tune the hyperparameters relevant to the DBN method. The presented 
STWSP-SRDBN model makes use of spatio-temporal multivariate multi-dimensional histor-
ical weather data to learn new representations utilized for wind forecasting. The experimental 
validation of the STWSP-SRDBN approach is tested using a set of weather data and the results 
are investigated under numerous aspects. The experimental outcomes indicated the enhanced 
outcomes of the STWSP-SRDBN method over recent state of art approaches. As a part of future 
scope, hybrid deep learning models can be used to increase predictive performance. 
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