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This study relies on exergy principles to analyze the sustainability of the 

steel recycling process in electric arc furnaces. Focusing on a balance be-

tween material and energy efficiencies, the research addresses the degrada-

tion of elements such as manganese and silicon from steel to slag phase. 

Machine learning techniques were employed to predict and optimize element 

distribution coefficients. By leveraging HSC v. 9 software, a detailed exergy 

analysis was performed, utilizing precise coefficients for element distribution 

in steel and slag, with energy consumption. The results demonstrate the po-

tential of integrating exergy analysis and machine learning to enhance the 

sustainability of steel production, aligning with circular economy principles. 

Key words: electric arc furnace, exergy analysis, carbon footprint, circular 

economy. 

1. Introduction 

 

The global steel industry is currently facing significant environmental challenges. This industry 

contributes significantly to carbon dioxide emissions, accounting for 7-9% of total global emissions. 

This is further linked to significant energy consumption, representing 20% of total industrial energy 

consumption [1]. Traditional linear economic models prevalent in steel production exacerbate these 

problems, characterized by a "take-make-dispose" approach that leads to excessive resource use and 

significant environmental degradation. Although these models have historically been efficient in meet-

ing market demand, they now face numerous sustainability issues, particularly considering increasing 

global environmental awareness and regulatory pressures [2]. 

In response to these challenges, the circular economy (CE) emerges as a transformative model, 

moving away from traditional linear practices. It is based on the principles of resource efficiency, re-

cycling, and sustainability while extracting maximum value from materials. This model holds signifi-

cant potential for the secondary steel industry, which annually produces an average of 160 million tons 
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of steel at over five hundred locations in the European Union. This industry faces increasing costs and 

quality issues due to material diversity and the deteriorating quality of steel scrap [3]. 

To effectively implement the circular economy, it is essential to have a sophisticated and agile 

metallurgical infrastructure. Understanding the distribution of metals and materials throughout the 

system is crucial, as is the availability of relevant physical, metallurgical, and thermodynamic data. 

The digitalization of these data allows for the representative modeling and simulation of the movement 

of metals, materials, and mixtures, accounting for losses that are often ignored. Recognizing these 

losses is vital to avoid overoptimistic estimations of resource efficiency and the economic viability of 

the CE system [4-5]. 

Exergy analysis is a powerful tool for evaluating the efficiency and sustainability of industrial 

processes, particularly in the context of the circular economy. It quantifies the quality of energy and 

material flows, enabling the identification of losses and the potential for improvement. Integrating 

exergy analysis with circular economy principles can significantly enhance the sustainability of steel 

production by promoting closed-loop recycling, minimizing waste, and improving resource efficiency 

[6-8]. 

The circular economy is usually presented as an ideal approach, yet there are considerable chal-

lenges. High-profile publications frequently emphasize closed loops while largely ignoring losses and 

residue formation that occur at all stages of the CE life cycle. These losses destroy exergy and are not 

limited to the end-of-life stage, underscoring the importance of a realistic and comprehensive approach 

to implementing circular economy principles [3]. 

This study aims for a balance between material and energy efficiencies in Electric Arc Furnaces 

(EAF), with a specific focus on controlling the degradation of elements such as manganese (Mn) and 

silicon (Si) in molten steel. HSC 9.9.2.3 software [9] was used to obtain thermodynamic data and, 

alongside real operational data and machine learning techniques, the coefficients for element distribu-

tion in steel and slag were obtained. By leveraging exergy analysis, we seek to provide a comprehen-

sive assessment of the sustainability of the EAF process, aligning with the broader goals of the circular 

economy to reduce the carbon footprint and enhance the efficiency of steel recycling. 

2. Methods 

2.1. Heating conditions in an electronic furnace 

For the calculations, real data from a melting process in a furnace with a capacity of 60 tons of liquid 

steel and a 60 MVA transformer were used. The diameter of the metal bath (D) is 4100 mm, and the 

depth (H) is 920 mm. The D/H ratio of 4.45 is lower than the typical range of 4.8 to 6.2. This lower 

ratio is associated with increased radiation heat losses, energy losses through water cooling, and a 

reduced intensity of reactions between slag and steel. On the other hand, by insulating and improving 

heat distribution, foamy slag can mitigate the effects of lower D/H ratios. 

The electrodes are of ultra-high power type and are controlled automatically with a separate 

control system. 

The total energy input is from electrical and chemical sources, with about half going towards 

melting scrap material and 25-30% going to gases and dust. Figure 1 shows the setup of material flows 

in HSC Chemistry v. 9 software package. The chemical energy is primarily derived from natural gas, 

the reaction of oxygen with carbon, and other significant exothermic reactions. 



3 

The primary gas in the furnace chamber is carbon monoxide, making up 67.13 wt.% (as indicat-

ed in Table S2), with carbon dioxide and nitrogen also present in varying amounts depending on the 

process stage and air entrainment. 

 

Figure 1. Setting up material flows in an EAF and LF 

The input material for EAF consists of a mix of steel scrap of varying quality, bulk density, and 

surface area-to-volume ratios. The scrap is charged in baskets such that scrap with high bulk density 

(e.g., foundry return scrap) is placed at the bottom to accelerate heat transfer from the hot bath towards 

the scrap. Scrap with low bulk density (e.g., sheet metal) is placed at the top of the basket, allowing it 

to come directly into contact with the electric arc, absorb radiant energy, and melt quickly. After the 

scrap melts, liquid steel is tapped, leaving about 5-10% of liquid metal from the total furnace capacity 

for easier melting of new feed, which reduces overall energy consumption. The charging baskets range 

from 10 to 30 tons, and the charging time per basket is about five minutes. Two to three baskets are 

charged per cycle. The time from tap to tap is about 50 minutes. The typical strategy for one melting 

cycle is as follows:  

1. Charging the scrap into the furnace, where liquid metal from the previous melt was left,  

2. Melting,  

3. Second charging,  

4. Melting,  

5. Third charging,  

6. Melting,  

7. Refining,  

8. Temperature adjustment, and deoxidation (when required, depending on the product grade), 

9. Tapping. 

The strategy for melting the scrap also affects energy consumption, with losses most associated 

with interruptions in operation. This can arise due to various factors such as preparation of the tap 

hole, refractory materials, and problems with charging. Additional materials such as coke and lime are 

added to the furnace to control composition and foaming of the slag. Foamy slag has multiple contri-

butions to the melting process in the electric arc furnace, such as controlling the oxidation and reduc-
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tion of iron, carbon and impurities, preserving refractory material from the radiation of the electric arc, 

and improving the energy transfer from the electric arc to steel. 

2.2. Machine learning methods for obtaining element distribution coefficients 

The approach to determining element distribution coefficients in the recycling process of EAF 

leverages the integration of machine learning with historical operational data. Utilizing data collected 

over five years, encompassing approximately 14,800 melts focused solely on reinforcing steel produc-

tion and monitoring 42 different process parameters, provides a robust dataset for analysis. 

The primary computational environment is Python 3.x, with libraries such as Pandas for data 

manipulation and SciPy for mathematical calculations, particularly using the interp1d function for 

interpolation of slag composition based on lime content. 

The methodology begins by conducting five controlled melts in an actual Electric Arc Furnace, 

with varying amounts of oxygen, coke, and lime in each experiment. These five melts systematically 

capture the dynamic range of lime additions typically observed in operational settings. Following these 

adjustments, each melt undergoes detailed chemical analysis in the laboratory to determine the precise 

chemical compositions of the slag, in line with methods detailed in the literature [10]. This generates 

foundational data, where results are captured empirically, and derived slag compositions are obtained 

from each of the five experimental conditions [11]. 

Utilizing this empirical data, an interpolation method is then applied across all historical entries 

in the database. This process estimates the slag composition for each melt, leveraging the variations in 

limestone (CaCO3) addition recorded during actual furnace operations. By interpolating between the 

established data points from the experimental results, we approximate the chemical composition of 

slag across the broader dataset, thus enhancing the predictive accuracy of the model concerning slag 

chemistry variations due to differing limestone inputs. Oxygen and coke additions also affect slag 

chemistry, but they are not covered in this interpolation model. Despite this, the method has yielded 

reliable results due to the consistent processing of reinforcing steel and the inclusion of multiple other 

operational parameters. 

This interpolation facilitates the development of predictive models for element transition (distri-

bution), such as alloying components, impurities, and base metals like iron, from liquid steel into slag. 

By extending the slag content across the entire database based on oxygen, coke, lime addition, a foun-

dation is laid for predictive modeling. For instance, machine learning models, like those predicting the 

transfer of valuable elements from liquid steel to slag, are developed using Python’s sklearn library 

with RandomForestRegressor. In developing these models, data preparation involves splitting the da-

taset into training and test sets using the train test split function, with 20% of the data designated as the 

test set to ensure robust model evaluation. Model parameter optimization is conducted through Ran-

domizedSearchCV, exploring a defined parameter space to identify optimal settings over 50 iterations 

with three-fold cross-validation. The resulting optimized RandomForestRegressor model is trained on 

the training set. Model evaluation on the test set utilizes metrics such as Mean Absolute Error (MAE) 

and the coefficient of determination (R
2
) to assess performance, providing insights into the accuracy 

and reliability of the model’s predictions [1, 11-13].  
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2.3. HSC Chemistry setup 

The modeling and simulation of the steel production process was carried out using chemical 

analysis and determination of the most important thermodynamic parameters of the process. HSC 

Chemistry version 9 was used to determine material and energy flows. The program contains 24 mod-

ules for calculations and one of the modules is HSC-Simulation (HSC-Sim), was used in this work. 

The model begins with the selection of input raw materials, phase composition, temperature and pres-

sure input from the observed process. The distribution coefficients of the elements in the products are 

determined on the basis of the equilibrium composition of the observed system and in accordance with 

the specified reactions in the defined regime. The software provides data for the material and energy 

balance of the given process, depending on the input conditions, the data of which are stored in the 

program’s database. The modeling results enable a comprehensive analysis of material, which ulti-

mately provides an insight into the overall material and energy input and output flows. An overview of 

the entire modeling approach has been shown in Figure 2.  

 

Figure 2. Modeling procedure for performing the exergy analysis 

3. Results and discussion 

3.1. Elements distribution using machine learning techniques 

The integration of predictive machine learning techniques in EAF represents a shift from tradi-

tional steel production methods to intelligent, data-driven operations. These models enable real-time 

adjustments of process parameters based on predictive analytics, significantly enhancing energy effi-

ciency. For instance, the justified use of input materials and fine-tuning of operational parameters, 

guided by predictive models, not only reduces energy consumption but also maintains the quality of 

produced steel. Such precision in managing electrical energy consumption directly contributes to re-

ducing environmental footprint in steelmaking, aligning with circular economy principles of waste 

minimization and environmental impact. 

To achieve a comprehensive material balance and accurately determine the distribution coeffi-

cients for various elements, machine learning models were trained on extensive historical operational 

data [1]. This data encompassed a wide range of process parameters, allowing the models to capture 

the complex relationships between input materials, operational conditions, and output compositions. 

By leveraging these predictive models, the study could accurately estimate the material flows and ele-

ment distributions for each melt, resulting in the detailed material balance presented in Table 1. 

 

 

 

https://www.mdpi.com/1996-1073/12/7/1313#fig_body_display_energies-12-01313-f003
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Table 1. Empirical distribution coefficients obtained using ML techniques on production data 

Element Steel EAF Slag EAF Dust EAF Gas EAF 

Al 0.0022 0.9930 0.0048 / 

B 1.0000 / / / 

C 0.0239 / 0.2790 0.6971 

Ca / 0.9538 0.0456 / 

Cr 0.6952 0.3048 / / 

Cu 0.9674 0.0016 0.0310 / 

Fe 0.9770 0.0205 0.0025 / 

H / / / 1.0000 

Mg / 0.6763 0.3237 / 

Mn 0.4409 0.5591 / / 

Mo 1.0000 / / / 

N / / / 1.0000 

Ni 1.0000 / / / 

O / 0.6210 0.0590 0.3200 

P 1.0000 / / / 

Pb 0.7075 / 0.2925 / 

S 0.8892 / 0.1108 / 

Si 0.1597 0.8379 0.0024 / 

Sn 1.0000 / / / 

V 1.0000 / / / 

Zn 0.1097 / 0.8903 / 

 

The distribution of elements between steel, slag, gas, and dust phases in the EAF process re-

flects the efficiency of the process in managing alloying elements and impurities. The chemical analy-

sis of crude steel is an average based on 8,763 melts related to reinforcing steel production, after ap-

plying the cleaning procedure of data described in detail in the reference [1].  

3.2. Exergy analysis  

Based on the average input data for the variables from production and the distribution coeffi-

cients of the elements from Table 1, HSC Chemistry software was used to perform precise thermo-

chemical calculations. The output components were determined according to Table 2 and Figure S1, 

where the precision of the values reflects the results of the computational model. 

 

Table 2. Streams of the input and output materials in the EAF and LF 

Scrap 64994.0 1218.3 Steel 61174.5 1096.9 

Coke 350.0 24.6 Slag 6057.6 76.3 

Fluxes 1559.0 16.6 Dust 1148.4 36.5 

Deoxidizing materials 4.5 0.17 Gas 2042.3 95.4 

Alloying materials 524.5 12.7    

Input materials Output materials 

Component Mass [kg] Mole [kmol] Component Mass [kg] Mole [kmol] 

Electric arc furnace 
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Oxygen 2701.8 84.4     
Nitrogen 24.6 0.88     
Natural gas 181.8 11.3     
Electrodes 84.2 7.01     

Total 70424.5 1376.0  70422.8 1305.2 
 

 

Steel 61174.6 1096.9 Steel 61349.3 1106.6 
Coke 214.5 15.1 Slag 674.8 11.3 
Fluxes 668.3 7.10 Dust 82.0 6.57 
Deoxidizing materials 1.95 0.07 Gas 178.0 7.26 
Alloying materials 224.8 5.45    

Total 62284.1 1124.6  62284.1 1131.6 

 

Based on the results of the simulation and using input material data (Table 2) for EAF and LF, 

an analysis of the energy of the steel production process was done. 

The values of energy are calculated for the mass of components of the input materials, which 

data is listed in Table 2 and in Tables S1 and S2. The energy calculation for the steel production pro-

cess detailed is listed in tables S3 and S4, as well as in the following figures 3 and 4. 

 

Figure 3. Enthalpy flow for EAF and LF 

Ladle refining furnace 
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Figure 4.  Exergy flow for EAF and LF 

 

 

Figures 5 to 8 compare the total exergies of the input and output materials, respectively. It 

should be noted that scrap has the highest total exergy of the input materials and steel has the highest 

exergy of the output materials. 

 

Figure 5. Total exergy of input materials of EAF 
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Figure 6. Total exergy of output materials of EAF 

 

Figure 7. Total exergy of input materials of LF 

  

Figure 8. Total exergy of output materials of LF 

The calculated results of equilibrium composition for selected elements in the steel phase and 

slag phase of EAF are shown in the following figures. 
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Figure 9. Distribution of elements per Oxygen input in a) Steel EAF and b) Slag EAF at 1600°C  

 

Higher oxygen input during the refining stage leads to the oxidation of alloying elements like 

silicon and manganese, or aluminum (as impurity from scrap), which have a higher affinity for oxygen 

than iron. This results in their transfer to the slag. To compensate for these losses, higher quantities of 

ferrosilicon and ferromanganese are often added during the final stage of the process. 

Copper shows higher amount in the steel with increased oxygen use because when the other al-

loying elements and iron are oxidized preferentially, reducing the mass of alloy, without copper oxida-

tion and therefore it’s composition in the molten alloy increases. 

 

Figure 10. Distribution of elements per Coke input in a) Steel EAF and b) Slag EAF at 1600°C 

With an increase in coke input, oxygen is consumed by it, leading to less oxidation of alloying 

elements to slag and more reporting to molten alloy. 
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Figure 11. Distribution of elements per Fluxes input in a) Steel EAF and b) Slag EAF at 1600°C 

 

The fluxes used in the EAF process consist of 95.7 wt.% CaCO3 and 4.3 wt.% MgO, with the 

MgO content coming from recycled refractory material, which is crushed and added back into the 

furnace. Increased fluxes alter the slag basicity, which enhances its oxidizing capacity, causing more 

alloying elements like silicon and manganese to report to the slag rather than remaining in the alloy. 

The distribution of manganese (Mn) and silicon (Si) in the EAF process is crucial for under-

standing material losses and optimizing energy use. This significant loss indicates the strong oxidizing 

conditions within the EAF, which facilitate the formation of silicon dioxide. The presence of Mn and 

Si in the slag can be influenced by the oxygen potential in the slag phase and the basicity of the slag. 

By optimizing the input of lime and other fluxes, it is possible to adjust the basicity and reduce man-

ganese losses, thus improving the yield of manganese in the steel phase. Controlling these conditions 

is important for improving recovery of Mn and Si, and reducing the need for additional alloying mate-

rials. 

4. CONCLUSION 

The integration of exergy analysis with machine learning techniques provides a robust frame-

work for analysis of the EAF steel recycling process. The study highlights the critical balance between 

material losses and energy consumption, demonstrating that careful control of furnace conditions and 

input materials can significantly reduce the loss of valuable elements like manganese and silicon. By 

adjusting the slag composition and the basicity with the oxygen potential, it is possible to improve the 

recovery of these elements in the steel phase and thus increase the overall yield and quality of the steel 

produced. 

The exergy analysis reveals substantial opportunities for improving energy efficiency, particu-

larly by addressing exergy destruction in the slag and gas phases. This approach not only reduces en-

ergy consumption but also minimizes the environmental impact of steel production. The use of ma-

chine learning models enables real-time predictions and adjustments, enhancing process control and 

operational efficiency. 
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Figure S1. Mass flow for EAF and LF 

 

Table S1. Input materials element composition of EAF 

Component 
wt. % 

Scrap EAF 

Fe(FCC) 
94.4000 

C 
0.7900 

Mn 
0.5900 

Si 
0.5000 

S 
0.0400 

P 
0.0300 

Cr 
0.1700 

Ni 
0.1000 

V 
0.0040 

Zn 
0.5500 

Pb 
0.0500 

Cu 
0.3500 
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Sn 
0.0200 

Mo 
0.0200 

B 
0.0003 

Al 
0.8600 

As 
0.0100 

Na 
0.0100 

K 
0.0100 

Co 
0.0100 

Cd 
0.0020 

Ti 
0.0600 

Nb 
0.0040 

Sb 
0.0100 

Zr 
0.2900 

Bi 
0.0100 

Ca 
0.9200 

Mg 
0.1800 

Ce 
0.0020 

W 
0.0050 

Total 100.00 

 Coke EAF 

C  79.90 

S  1.72 

SiO2  2.47 

H2O  2.06 

NH4NO3 13.84 

Total  100.00 

 Fluxes EAF 

CaCO3  95.72 

MgO  4.28 

Total 100.00 

  Deoxidizing materials EAF 

Al 100.00 

Total 100.00 

  Alloying materials EAF 

Fe(FCC)  21.02 

Si  28.70 

Mn  47.85 

C  1.52 

P  0.10 

S  0.02 

Cr  0.07 

Al  0.48 

Ca  0.24 
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Total 100.00 

 

 

 

 

 

Table S2. Output materials element composition of EAF 

Component 

wt. % 

Steel EAF 

Fe 98.1670 

C 0.0470 

Mn 0.4570 

Si 0.1252 

P 0.0327 

S 0.0467 

Ni 0.1062 

Cr 0.1260 

Cu 0.3597 

Mo 0.0212 

V 0.0042 

Ti 0.0182 

Al 0.0021 

Nb 0.0042 

W 0.0053 

As 0.0106 

Sn 0.0212 

Co 0.0106 

Pb 0.0376 

B 0.0003 

Sb 0.0106 

Zr 0.3081 

Bi 0.0106 

Ca 0.0012 

Zn 0.0641 

Ce 0.0021 

Total 100.00 

 Slag EAF 

Na2O 
 0.14 

MgO 
 2.91 

Al2O3 
 17.53 

SiO2 
 14.19 

K2O 
 0.13 

CaO 
 26.37 

TiO2 
 0.77 
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MnO 
 7.44 

Fe2O3 
 29.70 

CuO 
 0.01 

Cr2O3 
 0.82 

Total 100.00 

 Gas EAF 

CO(g) 73.0090 

CO2(g) 
0.0003 

N2(g) 
1.5555 

H2(g) 
0.0000 

H2O(g) 
25.4347 

Total  100.00 

 Dust EAF 

Al2O3 0.44 

C 29.16 

CaO 6.66 

Cd 0.11 

CuS 0.92 

MgO 7.35 

Mn3O4 0.70 

PbO 0.89 

SiO2 0.21 

ZnFe2O4 27.28 

ZnO 25.08 

Fe3O4 0.58 

Total 100.00 

 

 

 

 

Table S3. Energy values of input streams of EAF on a chemical component basis (T=25°C, 

p=1atm) 

Scrap EAF 

Fe(FCC) 
8 614.55 8 614.55 411 226.21 5 823.60 417 049.81 

C 
 0.00  0.00 17 538.88  0.00 17 538.88 

Mn  0.00  0.00 3 404.12  0.00 3 404.12 

Si  0.00  0.00 9 892.98  0.00 9 892.98 

S  0.00  0.00  494.01  0.00  494.01 

P  0.00  0.00  542.19  0.00  542.19 

Cr  0.00  0.00 1 241.83  0.00 1 241.83 

Ni  0.00  0.00  268.64  0.00  268.64 

V  0.00  0.00  36.81  0.00  36.81 

Component 
Thermal  
Energy  

Total  
Enthalpy  

Chemical  
Exergy  

Physical  
Exergy  

Total  
Exergy  

  MJ   
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Zn  0.00  0.00 1 884.66  0.00 1 884.66 

Pb  0.00  0.00  39.08  0.00  39.08 

Cu  0.00  0.00  474.68  0.00  474.68 

Sn  0.00  0.00  60.42  0.00  60.42 

Mo  0.00  0.00  99.07  0.00  99.07 

B  0.00  0.00  11.33  0.00  11.33 

Al  0.00  0.00 16 483.69  0.00 16 483.69 

As  0.00  0.00  42.73  0.00  42.73 

Na  0.00  0.00  95.19  0.00  95.19 

K  0.00  0.00  60.96  0.00  60.96 

Co  0.00  0.00  34.56  0.00  34.56 

Cd  0.00  0.00  3.45  0.00  3.45 

Ti  0.00  0.00  739.08  0.00  739.08 

Nb  0.00  0.00  25.18  0.00  25.18 

Sb  0.00  0.00  23.39  0.00  23.39 

Zr  0.00  0.00 2 237.64  0.00 2 237.64 

Bi  0.00  0.00  8.55  0.00  8.55 

Ca  0.00  0.00 10 877.83  0.00 10 877.83 

Mg  0.00  0.00 3 017.51  0.00 3 017.51 

Ce  0.00  0.00  9.78  0.00  9.78 

W  0.00  0.00  14.65  0.00  14.65 

Total 8 614.55 8 614.55 480 889.10 5 823.60 486 712.70 

C  0.00  0.00 9 552.34  0.00 9 552.34 

S  0.00  0.00  114.67  0.00  114.67 

SiO2  0.00 - 131.30  0.36  0.00  0.36 

H2O  0.00 - 114.51  0.38  0.00  0.38 

NH4NO3  0.00 - 221.25  178.54  0.00  178.54 

Total  0.00 - 467.06 9 846.29  0.00 9 846.29 

CaCO3  0.00 -17 990.15  255.93  0.00  255.93 

MgO  0.00 - 996.84  98.60  0.00  98.60 

Total  0.00 -18 986.99  354.54  0.00  354.54 

Al  0.00  0.00  134.18  0.00  134.18 

Total  0.00  0.00  134.18  0.00  134.18 

Fe(FCC)  15.48  15.48  738.88  10.46  749.35 

Si  0.00  0.00 4 582.48  0.00 4 582.48 

Mn  0.00  0.00 2 228.00  0.00 2 228.00 

C  0.00  0.00  272.64  0.00  272.64 

P  0.00  0.00  14.52  0.00  14.52 

S  0.00  0.00  1.54  0.00  1.54 

Cr  0.00  0.00  4.25  0.00  4.25 

Al  0.00  0.00  74.35  0.00  74.35 

Coke EAF 

Fluxes EAF 

Deoxidizing materials EAF 

Alloying materials EAF 
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Ca  0.00  0.00  22.93  0.00  22.93 

Total  15.48  15.48 7 939.60  10.46 7 950.06 

O2(g)  0.00  0.00  330.98  0.00  330.98 

Total  0.00  0.00  330.98  0.00  330.98 

N2(g)  0.00  0.00  0.59  0.00  0.59 

Total  0.00  0.00  0.59  0.00  0.59 

CH4(g)  0.00 - 845.38 9 428.18  0.00 9 428.18 

Total  0.00 - 845.38 9 428.18  0.00 9 428.18 

C  0.00  0.00 2 877.19  0.00 2 877.19 

Total  0.00  0.00 2 877.19  0.00 2 877.19 

OVERALL 
8 630.03 22 930.53 511 800.64 5 834.06 552 234.64 

 

Table S4. Energy values of output streams of EAF on a chemical component basis 

(T=1600 °C, p= 1 atm) 

Compo-

nent 

Thermal  
Energy  

Total 
 Enthalpy  

Chemical 
 Exergy  

Physical  
Exergy  

Total  
Exergy  

  MJ   
 

Steel EAF 

Fe 81 059.68 81 059.68 402 505.67 57 311.62 459 817.28 

C  77.40  77.40  981.35  53.58 1 034.93 

Mn  403.16  403.16 2 481.86  284.73 2 766.59 

Si  249.59  249.59 2 330.80  187.85 2 518.66 

P  27.20  27.20  556.72  17.50  574.22 

S  47.28  47.28  542.59  30.08  572.67 

Ni  79.04  79.04  268.64  55.93  324.57 

Cr  80.72  80.72  866.29  55.48  921.77 

Cu  204.64  204.64  459.22  141.65  600.87 

Mo  6.21  6.21  99.07  4.15  103.22 

V  2.52  2.52  36.81  1.70  38.51 

Ti  12.58  12.58  210.79  8.50  219.29 

Al  2.73  2.73  37.05  1.83  38.87 

Nb  1.26  1.26  25.18  0.84  26.01 

W  0.78  0.78  14.65  0.52  15.16 

As  5.96  5.96  42.73  4.08  46.81 

Sn  5.69  5.69  60.42  3.51  63.94 

Co  8.27  8.27  34.56  5.90  40.47 

Pb  5.59  5.59  27.65  3.57  31.22 

B  0.69  0.69  11.33  0.47  11.80 

Sb  3.71  3.71  23.39  2.48  25.87 

Zr  106.62  106.62 2 237.64  70.99 2 308.64 

Oxygen EAF 

Nitrogen EAF 

Natural gas EAF 

Electrodes EAF 
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Bi  1.80  1.80  8.55  1.12  9.66 

Ca  1.12  1.12  12.93  0.75  13.69 

Zn  33.13  33.13  206.77  21.56  228.33 

Ce  0.59  0.59  9.78  0.40  10.19 

Total 82 427.95 82 427.95 414 092.44 58 270.81 472 363.25 

Na2O  29.68 - 29.00  42.27  20.87  63.15 

MgO  346.81 -2 285.92  260.42  231.38  491.80 

Al2O3 2 014.16 -15 439.67  156.30 1 355.88 1 512.18 

SiO2 1 581.65 -11 450.29  35.44 1 062.31 1 097.75 

K2O  0.00  0.00  0.00  0.00  0.00 

CaO  0.00  0.00  0.00  0.00  0.00 

TiO2  15.30 - 14.89  34.35  10.22  44.57 

MnO 2 299.77 -15 782.86 3 638.70 1 519.69 5 158.39 

Fe2O3  67.45 - 482.70  12.64  44.90  57.54 

CuO  544.03 -1 903.40  805.76  362.46 1 168.23 

Total 10 492.26 -53 456.72 5 155.67 7 161.06 12 316.73 

CO(g) 3 633.45 -4 069.05 19 165.45 2 413.76 21 579.21 

CO2(g)  0.03 - 0.10  0.01  0.02  0.02 

N2(g)  76.58  76.58  0.99  50.86  51.86 

H2(g)  0.00  0.00  0.00  0.00  0.00 

H2O(g) 1 180.44 1 180.44 5 731.80  779.72 6 511.52 

Total 7605.39 -10831.38 24 898.25 3 244.38 28 142.63 

Al2O3  9.64 - 73.88  0.75  6.49  7.24 

C  902.10  902.10 11 438.35  624.51 12 062.86 

CaO  110.05 - 755.25  174.12  72.72  246.84 

Cd  0.61  0.61  3.45  0.39  3.84 

CuS  11.39  5.49  76.38  7.72  84.10 

MgO  165.96 -1 093.87  124.62  110.72  235.34 

Mn3O4  15.67 - 33.34  6.62  11.33  17.96 

PbO  5.42 - 4.58  2.87  3.72  6.59 

SiO2  4.54 - 32.88  0.10  3.05  3.15 

ZnFe2O4  0.00  0.00  0.00  0.00  0.00 

ZnO  395.31 -1 182.44  25.39  263.21  288.60 

Fe3O4  291.30 - 941.50  100.92  194.55  295.47 

Total 1 925.34 -3 228.50 11 957.00 1 307.94 13 264.94 

OVERALL 99 736.11 22 930.53 456 103.36 69 984.19 526 087.55 

 

 

Slag EAF 

Gas EAF 

Dust EAF 


