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We investigate exact multiple soliton waves in the time-dependent variable coef-
ficients modified KdV (mKdV) equation. Employing similarity transformations, as 
well as tanh and sech function methods, we present multiple kink wave, singular 
kink, and triangular function solutions for the time-dependent mKdV equation with 
variable coefficients. Specifically. We investigate the construction of multiple soli-
tons by choosing a special form of the time variable. Our results demonstrate that 
the specific choice of these analogous temporal variables can effectively control 
the characteristics of numerous soliton kinks, offering potential applications in 
diverse fields
Key words: mKdV equations, exact solutions, similarity transformation

Introduction

The KdV model and the mKdV model are the most well-known mathematical rep-
resentations of shallow water wave surfaces. Notably, it is specifically regarded as one of the 
solvable differential models, meaning that its solutions are precisely known [1-5]. That is an 
integrable model, and the scattering inverse transform method solves it. Current research fo-
cuses on the mathematical theory stemming from the KdV model, first proposed by Boussinesq 
in 1877 and subsequently rediscovered by Korteweg and De Vries in 1895. This theory is very 
important [6-8]. Furthermore, Korteweg and De-Vries used the solitary waves that Scott Rus-
sell initially suggested in their KdV model [9, 10]. Numerous natural phenomena are connected 
to the KdV and mKdV models [11-14]. Examples of these include plasma, soliton theory, and 
quantum mechanics [15-20].

The field of optics and soliton research is thriving due to its potential applications 
in the creation of new optical communication models and data transfers [3, 10, 15, 19, 20], 
involving chemical reactions, light-induced phase shifts in metals, and electron dynamics in 
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semiconductors. A unique type of ultra-short pulse that allows for long-distance transmission 
while maintaining the pulse’s structure and velocity is the optical soliton [21-23]. 

Over the past few decades, a wide array of linear and non-linear partial differential 
models has emerged to generate new analytical and numerical solutions. Different methodolo-
gies have been proposed to explore these models, offering diverse approaches to understanding 
their solutions. Key examples include the Hirota’s method [6], tanh method [7, 24], the inverse 
scattering method, the Backlund transformation, Adomian decomposition technique [9], and 
Miura’s transformation. 

We can utilize various direct and indirect methods to derive solutions for models of 
non-linear differential equations, facilitated by symbolic arithmetic packages [7]. To obtain 
analytical solutions for numerous non-linear differential models involving sine, cosine, cotan-
gent, tangent, and hyperbolic cotangent functions, techniques developed by Wazwaz [9] and 
Malfliet [24] have been employed and further refined. Additionally, many other methods have 
been introduced by mathematicians and physicists to analyze and discover new solutions for 
non-linear differential models, including the F-expansion method, spectral collocation method, 
sub-equation method, iterative variation technique, and Jacobi elliptic method [15-20]. 

It is important to remember that the equilibrium that results from the non-linear pos-
sessions and the dispersion is what leads to the classical soliton in independent differential 
non-linear equations with constant coefficients. However, because of their extremely intriguing 
qualities for possible future scientific applications, differential non-linear models with time-de-
pendent coefficients own garnered a lot of thoughtfulness recently.

One of the primary objectives of this article is to present an effective way for di-
rectly verifying the existence of multiple solitons in the mKdV equation with time-dependent 
coefficients. Several analytical solutions are obtained using symbolic mathematics software, 
specifically MAPLE.

Model and technique of solution 

We examine the following generalized mKdV equation with a time-dependent coeffi-
cient, which describes by the model:

26 ( ) ( ) 0, ( ) ( )t x xxxU t U U t U t a tα β α β− + = = (1)
where α(t), β(t) are the variable time coefficients, U =U(t, x) – the scalar-valued function, t  –  
the  time variable, and  x  – the spatial variable co-ordinate, and it is a time dependent variable. 
When α(t) = β(t) = 1, eq. (1) is become the standard mKdV equation. Assume that:

( , ) ( , )U t x u T x= (2)
where T = T(x) is the time real function. Selecting β(t) = ∂T/∂t substituting the transformation 
eq. (2) into eq. (1), we obtain that eq. (1) becomes:

26 0T x xxxu au u u− + = (3)
Using Malfliet’s technique, we derive multiple solitons of the KdV eq. (3), as pro-

posed in [24]. This approach provides multiple solitons more easily and conveniently than the 
inverse scattering method [11]. Abdel-Rahman [12] explores the multiple solitons of the mKdV, 
Boussinesq, regularized long wave, and modified Boussinesq models using a slightly modified 
technique. Additionally, the combined KdV and mKdV equations have been investigated by 
Zhang et al. [13], while Hassanian et al. [14] discuss multiple Jacobi elliptic functions applied 
to various non-linear models and coupled systems in. In this manuscript, we detail Malfliet’s 
procedure and calculate multiple soliton waves for the mKdV equation with time-dependent 
variables. We assume the solitary wave of the suggested non-linear model:
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( , ) ( ), ( )u T x u k x Tξ ξ ϕ ω= = + − (4)
where ξ is the traveling wave and k, ω are random constants, which will be specified later, de-
noting the wave number and velocity, respectively, and φ – an arbitrary constant.

Replacing eq. (4) into eq. (3), we have:
2 26 0u au u k uω ′ ′ ′′′− + = (5)

Malfliet’s procedure in [24] assumes that the solution can be expressed as the product 
of two functions:

( ) ( ) ( )u p qξ ξ ξ= (6)
where p(ξ), q(ξ) are unspecified functions. We have these relations:

( ) ( ), ( ''' 3 ) ( )u q p q p u q p q p q p′ ′ ′′′ ′ ′′= + ↔ = + + ↔ (7)
The non-linear factor –6auu′ is transformed into:

6 ( ), 6au u u u u u pqu u pq qp aα β α β α β′ ′ ′ ′ ′ ′− = − − = − − + = + (8)
By replacing eqs. (7) and (8) into eq. (5), we get:

( )2 2 23 0
2

pp k q k q u q quu q p q
p

ω βα
α

′′  ′′′ ′ ′ ′+ − + − + ↔ =  
  

(9)

for the presence of the differential q′ in eq. (9), we let
2

2k p u
p

ω
α

′′
= +

with a such structures for q, therefore, we discovery that for ω = p, q we obtain the Schrodinger 
model:

2 2 0k u ωψ ψ
α

 ′′ − + = 
 

(10)

where –ω/4k2 the eigenvalue and u2/k2 the scattering potential. Thus eq. (9) takes the form:

( )2 2(3 ) 0
2

p k q u q qu u q p qω βα
α

  ′′′ ′ ′+ − + − + ↔ =    
(11)

differentiating eq. (10) w.r.t. ξ:
2 2 2 0k u u uωψ ψ ψ

α
 ′′′ ′ ′− + − = 
 

we deduce that the resulting equality is coincide with eq. (11) gives 3 – α = 1, β/2 = 2 thus α = 4 
and β = 4. This gives 6α = 8, or α = 4/3. Since the two symbols p, q content the Schrodinger model:

2 2'' 0
4

k u ωψ ψ − + = 
 

(12)

Suppose the potential u2/k2 is attractive, i.e., u2/k2 < 0 and we can find distinct N dis-
crete eigenvalues:

2 , 1, 2,...,
4

n

n

n N
k
ω

− =

related with it. So eq. (12) can be written:

2 2 d0, , ( )
4 d

n
n n n n n n nk u k x T

ω
ψ ψ ξ ω ϕ

ξ
 ′′ − + = = − + 
 

(13)
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Consequently, the universal solution of the mKdV equation with a time-dependent 
coefficient can be formulated in terms of the wave functions, ψn can be expressed. As the Schro-
dinger eq. (13) has the wave solutions at this point:

2

1
( ) ( ) , ( )

N

n n n n n n
n

u k x Tξ ψ ξ ξ ω ϕ
=

= = − +∑ (14)

If there is no overlap between the functions ψn, eq. (13) can be expressed:
2 4 0

4
n

n n n nk
ω

ψ ψ ψ ′′ − + = 
 

To get the functions ψn satisfied the aforementioned equation, according to the tanh 
function method, we can equilibrium the non-linear term ψn

5 with the highest linear term ψ″n, we 
may determine the series degree of the solution as 5s = s + 2, so s = 1/2, therefore, we must take 
the transformation:

Then from eq. (15), we find that φn satisfies:
2 2 4 22 ( ) 4 0n n n n n n nk ϕ ϕ ϕ ϕ ω ϕ′′ ′− − − = (15)

thus the solution take the form:
2

0 1 tanh( ), [tanh( )] 1 tanh ( )n n n na aϕ ξ ξ ξ′= + = − (16)
By substituting into eq. (15), we can derive an algebraic system by setting the coeffi-

cients of the distinct factors of tanh(ξn) to zero. Solving this system gives:

0 1
3 3 3 1, , ,

6 6 3 3n na a k ω= = = = (17)

Then the functions φn take the form:

3 3 11 tanh )
6 3 3n nx Tϕ ϕ
   = + − +        

(18)

Thus we get the subsequent multiple kink wave for the mKdV model of time depen-
dent variable:

1

3 3 1( ) 1 tanh ) , ( )d
6 3 3

N

n
n

u x T T t tξ ϕ β
=

    = + − + =           
∑ ∫ (19)

By seeking an alternative solution for the function φn defined in eq. (15) using the tan 
function method, we obtain:

2
0 1 tan( ), [tan( )] 1 tan ( )n n n nb bϕ ξ ξ ξ′= + = + (20)

By replacing into eq. (20), we can create an algebraic system by setting the coeffi-
cients of the distinct factors of tanh(ξn) to zero. Solving this system of equations yields:

0 1
3 3 3 1, , ,

6 6 3 3n nb b k ω−
= = = = − (21)

Then the functions φn take the form:
3 3 3 1tan )

6 6 3 3n ni x Tϕ ϕ
  = + + +     

(22)

Consequently, we derive the subsequent multiple bell wave solution of the mKdV 
model by utilizing a time-dependent variable:
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1

3 3 1( ) tan ) , ( )d
6 3 3

N

n
n

u i x T T t tξ ϕ β
=

    = + + + =           
∑ ∫ (23)

By looking for another solution for eq. (15) using the coth function method, we obtain:
2

0 1 coth( ), [coth( )] 1 coth ( )n n n nc cϕ ξ ξ ξ′= + = − (24)
Substituting into eq. (24), we can establish an algebraic system by equating the coef-

ficients of the distinct factors of coth function zero. Resolving this system of equations yields:

0 1
3 3 3 1, , ,

6 6 3 3n na a k ω= = = = (25)

Then the functions φn take the form:

3 3 11 coth
6 3 3n nx Tϕ ϕ
   = + − +        

(26)

Consequently, we derive the subsequent multiple singular kink wave solution of the 
mKdV model with a time-dependent variable:

1

3 3 1( ) 1 coth , ( )d
6 3 3

N

n
n

u x T T t tξ ϕ β
=

    = + − + =           
∑ ∫ (27)

Looking for an alternative solution the function φn presented in eq. (15) using the 
rational tanh function, and applying the same steps, we find:

2

3 4tanh
3 31 2 3

3 3 3 41 tanh
3 3

n

n

n

x T

x T

ϕ
ϕ

ϕ

   − +       = +     ± − +       

(28)

Thus we get the subsequent kink shaped wave of the mKdV model with time depen-
dent variable:

1 2

3 4tanh
3 31 2 3( ) , ( )d

3 3 3 41 tanh
3 3

nN

n
n

x T
u T t t

x T

ϕ
ξ β

ϕ=

     − +        = + =      ± − +         

∑ ∫ (29)

Based on these results, the multiple wave solutions for the mKdV model with the 
time-dependent eq. (1) are obtained directly. The single kink solution for N=1 takes the form:

1
3 3 1( ) 1 tanh ) , ( )d

6 3 3
u x T T t tξ ϕ β

   = + − + =        
∫ (30)

The evolutional behavior of the solution eq. (19) at N = 1 characterized in fig. 1 
demonstrations one soliton presentation with the following selection φ1 = 0. Figure 1(a) with  
β(t) = 1, fig. 1(b) with β(t) = 20t, fig. 1(c) with β(t) = sinht, fig. 1(d) with β(t) = sint,  
fig. 1(e) with β(t) = t sint, fig. 1(f) with β(t) = t2 sint, fig. 1(g) with β(t) = sec2t, fig. 1(h) with  
β(t) = e2, and fig. 1(k) with β(t) = cos(t)esin(t). We gain different types of one kink shaped soli-
ton solution signified in fig. 1. The evolutional behavior of the solution eq. (19) when N = 2 



5034 
Abdalla, M. Y. Y., et al.: Multiple Soliton Solutions of the Model MKDV ... 

THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 5029-5036

Figure 1. Structures of one soliton solution eq. (19) with φ = 0; (a) β(t) = 1, 
(b) β(t) = 20t, (c) β(t) = sinht, (d) β(t) = sint, (e) β(t) = t sint, (f) β(t) = t2 sint,  
(g) β(t) = sec2t, (h) β(t) = e2, and (k) β(t) = cos(t)esin(t) 

Figure 2. Structures of two soliton solution eq. (19) with φ1 = –5 and φ2 = 5; 
(a) β(t) = 1, (b) β(t) = 20t, (c) β(t) = sinht, (d) β(t) = sint, (e) β(t) = t sint, 
 (f) β(t) = t2 sint, (g) β(t) = sec2t, (h) β(t) = e2, and (k) β(t) = cos(t)esin(t) 
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embodied in fig. 2 displays two soliton behaviors with the following selection φ1 = –5 and  
φ2 = 5. Figure 2(a) with β(t) = 1, fig. 2(b) with β(t) = 20t, fig. 2(c) with β(t) = sinht , fig. 2(d) with  
β(t) = sint, fig. 2(e) with β(t) = sint, fig. 2(f) with β(t) = t2 sint, fig. 2(g) with β(t) = sec2t,  
fig. 2(h) with β(t) = e2 and fig. 2(k) with β(t) = cos(t)esin(t). We obtain different types of double 
kink shaped soliton solution characterized in fig. 2. The evolutional behavior of the solution eq. 
(19) when N = 3 denoted in fig. 3 displays three soliton behaviors with the following selection 
φ1 = –7, φ2 = 7, and φ3 = 0. Figure 3(a) at β(t) = 1, fig. 3(b) at β(t) = 20t, fig. 3(c) at β(t) = sinht, 
fig. (3-d) at β(t) = sint, fig. 3(e) at β(t) = t sint, fig. 3(f) at β(t) = t2 sint, fig. 3(g) at β(t) = sec2t,  
fig. 3(h) at β(t) = e2, and fig. 3(k) at β(t) = cos(t)esin(t). We gain different types of triple kink 
shaped soliton solution characterized in fig. 3.

Discussion

We have presented the time-dependent coefficient mKdV model with numerous soli-
ton solutions in this leave. Using the tanh and tan function approaches in conjunction with the 
similarity transformation, we describe different kinds of multiple kink soliton solutions of the 
target model. Specifically, we investigate the developing multiple soliton constructions by a 
particular choice of similar time variable. The formally developed multiple soliton solutions 
demonstrate that the specific shape of these time-dependent variables can effectively influence 
the profiles of the multiple kink solitons. We explore different choices for the time-dependent 
coefficient and illustrate the obtained soliton solutions with graphs in figs. 1-3. The results can 
contribute to the discussion of additional integrable models for further insights.

Figure 3. Structures of three soliton solution eq. (19) with φ1 = –7 and φ2 = 7; 
(a) β(t) = 1, (b) β(t) = 20t, (c) β(t) = sinht, (d) β(t) = sint, (e) β(t) = t sint,  
(f) β(t) = t2 sint, (g) β(t) = sec2t, (h) β(t) = e2, and (k) β(t) = cos(t)esin(t) 
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