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When population units fail for several reasons, the competing risks model is trig-
gered. The failure time and associated reason of failure are noted in this model. It 
is possible to partially observe the reasons why the competing risks model fails. In 
this work, where the failure time is distributed with the power hazard rate distri-
bution, we utilize the competing risks model under partially observed reasons of 
failure. We develop maximum likelihood estimators of the model parameters with 
related estimated confidence intervals based on the independent type-I censoring 
competing risks data. Two distinct approaches are used to construct the bootstrap 
point estimate and associated bootstrap confidence ranges. Analysis is done using 
actual type-I competing risks data that has some failure causes missing at random.
Key words: power hazard rate distribution, maximun likelihood estimation, 

competing risks model type-I censoring scheme, 
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Introduction

The hazard rate function (HRF) was employed in reliability or survival analysis to 
gauge the unit’s likelihood estimation (LH) of failure or death. The HRF can be used to solve 
the problem of identifying the process of aging or classifying the lifetime distribution. The 
HRF is used as a density function describe the force of decrement in actuarial work or force of 
mortality. In addition, HRF was employed to present the instantaneous failure rate, see [1]. As 
shown in [2], the power of HRF is selected to characterize different lifetime distributions. For 
given the power HRF:

( )H t tβα= (1)
The probability density function (PDF) under power HRF eq. (1) is called power fail-

ure rate (FR) distribution is formulated:
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where two parameters α and β known as scale 
and shape parameters. In literture, certain distri-
butions can be categorized as a special case for 
power FR distribution. For example, we obtain 
the exponential distribution at β = 0, Rayleigh 
distribution at β = 1 and α = 1/ θ, linear failure 
rate distribution at β = 1, Weibull distribution at 
β = θ – 1. The power FR distribution has increas-
ing FR function at β > 0, constant FR function 
at β = 0 and decreasing FR function at β < 0,  
see fig. 1.

There are a number of reasons why units in real-world populations do not function as in-
tended.  Additionally, using a model known as competing risks, we seek to evaluate one reason of 
failure in relation other causes. Time-to-failure and related failure reasons made up the observed 
data in this model. The competing risks concept has garnered a lot of interest in the literature, for 
further information, see [3-6]. This issue was just resolved in [7-9]. The failure time and associ-
ated failure causes are noted in the competing risks model. However, under certain limited and 
complex operating environments, the failure time may be noticed but the corresponding causes of 
failure cannot be identified; these are referred to as partially observed causes of failure [10, 11]. 
In this research, we construct the statistical inference for competing power FR distributions in 
the presence of partially observable reasons of failure. The competing risks model is developed 
when data is being collected while adhering to the type-I censoring strategy. As a result, we sug-
gest that there are just two separate reasons for failure. The ML and bootstrap (BS) approaches 
are taken into consideration when formulating the classical estimate results. Analyzing an actu-
al data set is where the developed results are discussed. 

Model formulation

Suppose that, a random sample of size n, of units with identical independent lifetimes 
given by T1, T2,..., Tn. Prior the experiment is running the ideal test time η is proposed. Under 
consideration, only two independent causes of failure are observed the observed failure time 
define by Ti = min(Ti1, Ti2), i = 1, 2,..., n. The competing risks data, (Ti, δi), i = 1, 2, ..., r, r ≤ n are 
observed. Therefore, the observed values of competing failure time is denoted by t = {(t1, δ1), 
(t2, δ2),..., (tr, δr)}. The indicator δr under partially observed causes of failure δ ∈ {1, 2, *}mean 
the first, second or unobserved causes of failure, respectively.

The joint LHF of type-I of the competing risks data t = {(t1, δ1), (t2, δ2),..., (tr, δr)}, is 
defined:

[ ] [ ] [ ]( 1) ( 2) ( )
1,2,..., 1 2 1 2

1

!( ) ( ) ( ) ( ) ( ) ( ) ( )
( )!

i i i
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n r
r i i i i i
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− ∏t S f (3)

where S(.) and h(.) are denoted to survival and hazrd failure rate functions:
1,  

( )
0,  

i
i

i

j
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(4)

Figure 1. The FR functions of power FR 
distribution for α = 1 and different values of β
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We consider the following assumptions:
	– The latent variable Tij ~ power FR(αj, β), j = 1, 2 and Ti ~ power FR(α1 + α2, β).
	– The observed random variable ti = min(ti1, ti2) has power FR(α1 + α2, β).
	– The number of failure under the cause j is denoted by

	 1

( ), 1, 2,3
r

j i
i

m j jγ δ
=

= = =∑
	– Therefore, the joint LHF eq. (3) under the last assumptions can be formulated:

( ) ( )31 2 1 2 1 1
1 2 1 21 2

1 1

( , , ) exp log ( )
1
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β
+ +

= =

  +  ∝ + − − +  
+     

∑ ∑t (5)

Remark 1: 
	– In this model, we propose some of causes of failure are lost form some units under test and 

the observed failure time have power FR distribution with scale parameter α1 + α2 and shape 
parameter β.

	– Bernoulli distribution is considered as discrete distribution of m3 with probability of success 
p ∈ (0, 1) (masking probability).

	– Binomial distributions is considered as discrete distributions of m1 and m2 with probability 
of success α1/(α1 + α2) and α2/(α1 + α2), respectively, and number of trials (r – m3).

Maximum likelihood estimation 

In this section, we discuss the point maximum likelihood estimation (MLE) of the 
model parameters (MP). Also, we formulate the approximate information matrix to formulate 
the approximate confidence intervals.

Maximum likelihood estimators

The joint LHF eq. (5) under taken the natural logarithms is reduced:
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The LH equations (LHE) of the MP Θ = {α1, α2, β} are obtain from eq. (6) by taken 
the zero value of partial derivatives:
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and 
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From the LHE eqs. (8) and (9), we have:
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Therefore, the LHE are reduced:
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The LHE are reduced to one non-linear eq. (11) can be solve by iteration method as 
the following theorem. The MLE of has α1 and α2 are acquired from eq. (12) by replacing β by β^.

Theorem: From eq. (11), the MLE of β, is obtained by fixed point iteration (FPI):
( )gβ β= (13)

where

1 1

1

1 1 1 1

1 1 1

( )

( ) 1

( ) log log ( ) log

r

i
i

r r r

i i i i
i i i

r n r t

g

r n r t t n r t t

β β

β β β β

η

β

η η η

+ +

=

+ + + +

= = =

  − + 
  = −

      − + − − +   
      

∑

∑ ∑ ∑
(14)

The FPI with initial value obtained from eq. (6) after replace α1 and α2 from eq. (12). 
When the value of |β i+1 – β i| is sufficiently small the iteration is stopped.

Approximate information matrix and confidence intervals

The negative expectation of the second partly derivative of the log-LHF with respect 
to model inputs is the definition of the Fisher information matrix (FIM) in the literature. This 
expectation is more unachievable in more situations. Therefore, we replace FIM by approxi-
mate information matrix define on the parameter vector Θ = {α1, α2, β}:

2
1 2

1,2,3 and 1,2,3

( , , )
AIM( )

i j i j

α α β

= =

 ∂
Θ = − 

∂Θ ∂Θ  

t

(15)

The AIM at the ML estimate of the MP Θ^ = {α^
1, α^

2, β
^} is denoted by AIM(0)(Θ^ ). Under 

normal proporty of ML estimate Θ^ = {α^
1, α^

2, β
^}. The MP estimate are distributed with bivariate 

normal distribution and defined:
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( )(0)ˆ ˆ ˆN ,  AIM ( )Θ→ Θ Θ (16)

The corresponding 100(1 – γ)% approximate confidence intervals of the MP  
Θ = {α1, α2, β} are formulated:

2 2 2
1 11 2 22 1 33

ˆˆ ˆ, , and  z e z e z eγ γ γα α β   (17)

where the tabulated value z(γ/2) is computed from N(0,1) with confidence level equal to (1 – γ). 
Also, the values e11, e22 and e33 are the diagonal of matrix AIM(0)(Θ^ ). The approximate confi-
dence intervals define by eq. (17) have shown that, the lower bound of interval may be zero. 
Hence, in the negative lower bound case logarithmic transformation under delta method can be 
applied, see [12, 13] as follows.

The pivotal quantity (logΘ^ i – logΘ  i)/Var(logΘ^ i) has standard normal distribution. 
Hence the approximate interval estimate of the MP Θ = {α1, α2, β}is formulated:

( ) ( )
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 
 Θ

Θ Θ 
Θ 

 

(18)

where the value Var(logΘ^ i) = Var(Θ^ i)/Θ^ i and i = 1, 2, 3. 

Bootstrap confidence intervals

The BS procedure is referred to as a similar method in statistical literature. This tech-
nique is used to estimate the bias and variance of an estimator, calibrate hypothesis tests, and 
estimate the confidence ranges of the MP. The methods that were covered early in [14-17] were 
both parametric and non-parameteric. The BC interval using percentile BS and BS-methods is 
covered in this section; refer to [18]. The percentile BS and BS-t confidence intervals are con-
structed using the following procedure.

Algorithms:
	– From the observed original data set t = {(t1, δ1), (t2, δ2),..., (tr, δr)}, compute the ML estimate 

of the MP Θ^ = {α^
1, α^

2, β
^}.

	– For given masking probability p generate m3 from Bernoulli distribution and two integer 
numbers m1 and m2 generated from binomial distribution.

	– For given η generate the BS random variable t = {t1
*, t2

*, tr
*} from power FR distribution with 

scale parameter α^
1 + α^

2 and shape parameter β^.
	– Based ont = {t1

*, t2
*, tr

*} compute the BS sample estimates Θ^ * = {α^*1, α^*2, β
^*}.

	– Steps from 2 to 4 are repeated MB times.
	– Put the BS sample estimate in aseding order (α^*1(1), α^*1(2), ... , α^*1(MB)), (α^*2(1), α^*2(2), ... , α^*2(MB)), 

and (β^*
(1), (β

^*
(2), ..., (β

^*
(MB)). 

	– The BS point estimate is given:
MB MB MB

1Boot 1( ) 2Boot 2( ) Boot ( )
1 1 1

1 1 1ˆ ˆˆ ˆ ˆ ˆ,   and 
MB MB MBi i i

i i i

α α α α β β∗ ∗ ∗

= = =

= = =∑ ∑ ∑ (19)

Confidence intervals under percentile bootstrap technique

Suppose that, the empirical cumulative distribution function of ordering BS sample 
estimate define by Ψ(x) = P(Θ^ *

k < x) of Θ^ *
k, k = 1, 2, 3. Then, Θ^ *

kboot = Ψ–1(x). Hence, 100(1 – γ)% 
percentile BC of the MP given:



Almulhim, F., et al.: Inferences Based on Type-I Censoring Competing ... 
5016	 THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 5011-5018

boot boot
ˆ ˆ, 1

2 2k k
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Confidence intervals under BS-t technique

The ordered BS sample estimate transformed to the order statistics defined:
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where Θ^ 
1 = α^ 1, Θ

^ 
2 = α^ 2, Θ

^ 
3 = β^, and Ωk

*[1] < Ωk
*[2] <... < Ωk

*[MB]
.

Suppose that, the empirical cumulative distribution function of ordering statistics 
sample define by Ψ(x) = P(Θ^ *

k < x) on Ωk
*. Hence, we define for a given:

1
boot-t

ˆ ˆ ˆVar( ) ( )k k k x−Θ = Θ + Θ Ψ (22)
Hence, 100(1 – γ)% BC interval of the MP given:

boot boot
ˆ ˆ, 1

2 2k t k t
γ γ

− −
    Θ Θ −    

    
(23)

Data analysis

In this section, we consider the real data set presented by [19] of the lifetimes ob-
tained under conventional laboratory environment. The real data sets obtained from radiation 
male mice at age of 5-6 weeks with 300 roentgens. This data is descussed by different authors  
[20-24]. Suppose thymic lymphoma is considered as the first cause. Hence, the data under first 
cause of failure {159, 189, 191, 198, 200, 207, 220, 235, 245, 250, 256, 261, 265, 266, 280, 
343, 356, 383, 403, 414, 428, 432}. Other causes are considered as the second cause of failure 
{40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 249, 282, 324, 333, 341, 366, 385, 407, 420, 431, 
441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647, 651, 686, 761, 763}.

 For testing the validity of data for power FR distribution, we plot the fitted surviv-
al functions and empirical survival functions, figs. 2 and 3. Also, the values of Kolmogor-
ov-Smirnov (K-S) distances between the fitted distribution function and empirical distribution 
function which equal 0.2063 for the first cause and 0.1021 for the second cause. Hence, data 
have shown the power FR distributions is good fit for the model data. The ordered data under 
two choose of η = {4, 6} are reported in tab. 1. The results of MLE and BS estimate for η = 0.4 
and η = 0.6 are reported in tabs. 2 and 3.

          Figure 2. The fit data under first cause                    Figure 3. The fit data under second cause
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Table 1. The Autopsy data of 61 male mice at age 5-6 weeks unde 300r radiation radiation
0.4 0.42 0.51 0.62 1.59 1.63 1.79 1.89 1.91 1.98 2.0 2.06 2.07 2.2 2.22
2 2 2 2 1 2 2 1 1 1 1 2 1 1 2

2.28 2.35 2.45 2.49 2.5 2.52 2.56 2.61 2.65 2.66 2.8 2.82 3.24 3.33 3.41
2 1 1 2 1 * 1 1 1 1 1 * 2 2 2

3.43 3.56 3.66 3.83 3.85 4.03 4.07 4.14 4.2 4.28 4.31 4.32 4.41 4.61 4.62
1 1 * * 2 1 * 1 2 1 2 1 2 2 *

4.82 5.17 5.17 5.24 5.64 5.67 5.86
2 * 2 2 * 2 *

Table 2. The estimate values when τ = 0.4 
Parameter (.)ML (.)boot 95% ACI 95% ACI(boot-p) 95% ACI(boot-t)

 α1 0.0648 0.0782 (0.0244, 0.1052) (0.0215, 0.1352) (0.0258, 0.1011)

 α2 0.0533 0.0654 (0.0180, 0.0886) (0.0104, 0.0975) (0.0197, 0.0844)
 β 0.9015 0.9333 (0.3264, 1.4766) (0.3335, 1.4987) (0.3211, 1.4714)

Table 3. The estimate values when τ = 0.6 
Parameter (.)ML (.)boot 95% ACI 95% ACI(boot-p) 95% ACI(boot-t)

 α1 0.0581 0.0847 (0.0231, 0.0931) (0.0452, 0.2361) (0.0365, 0.0874)
 α2 0.0609 0.0929 (0.0246, 0.0971) (0.0421, 0.1345) (0.0331, 0.0905)
 β 0.9348 0.9873 (0.4919, 1.3775) (0.3529, 1.547) (0.4954, 1.3554)

Conclusions

Reliability studies frequently examine failure under various failure sources. Here, we 
create the statistical inference of competing power FR models in the case of partially observed 
failure causes. Additionally, real-world data is analyzed using the suggested model. The sug-
gested model performs well under the type-I censoring scheme for competing hazards, accord-
ing to the numerical results. Compared to approximate confidence intervals and BS-p confi-
dence intervals, the results of the confidence interval under BS-t are more useful. Additionally, 
real-world data is analyzed using the suggested model. The suggested model performs well 
under the type-I censoring scheme for competing hazards, according to the numerical results. 
Percentile BC intervals, BC-t intervals, and confidence interval outcomes under ML estimation 
are useful. Additionally, take note of the following points from an actual data set.

	y Compared to percentile BS and approximate confidence intervals, BC intervals are more 
useful.

	y The outcome is better for extending the optimal test duration τ.

Acknowledgment

Princess Nourah bint Abdulrahman University Researchers Supporting Project No. 
(PNURSP2024R515), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References
[1]	 Rinne, H., The Hazard Rate: Theory And Inference, Justus-Liebig University Press, Giessen, Germany, 

2014



Almulhim, F., et al.: Inferences Based on Type-I Censoring Competing ... 
5018	 THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 5011-5018

[2]	 Mugdadi, A. R., The Least Squares Type Estimation of the Parameters in the Power Hazard Function, 
Applied Mathematics Computation, 169 (2005), 2, pp. 737-748

[3]	 Han, D., Kundu, D., Inference for a Step-Stress Model with Competing Risks for Failure from the Gen-
eralized Exponential Distribution under Type-I Censoring, IEEE Transactions on Reliability, 64 (2015), 
1, pp. 31-43

[4]	 Koley, A, Kundu, D., On Generalized Progressive Hybrid Censoring in Presence of Competing Risks, 
Metrika, 80 (2017), Feb., pp. 401-426

[5]	 Abu-Zinadah, H. A., Neveen S. A., Competing Risks Model with Partially Step-Stress Accelerate 
Life Tests in Analyses Lifetime Chen Data under Type-II Censoring Scheme, Open Phys, 17 (2019),  
Apr., pp. 192-199

[6]	 Algarni, A., et al., Statistical Analysis of Competing Risks Lifetime Data from Nadarajaha and Abdullah 
M. Haghighi Distribution under Type-II Censoring, Journal of Intelligent and Fuzzy Systems, 38 (2019), 
3, pp. 2591-2601 

[7]	 Almarashi, et al., Inferences for Joint Hybrid Progressive Censored Exponential Lifetimes under Compet-
ing Risk Model, Mathematical Problems in Engineering, 2021 (2021), Aug., pp. 1-12

[8]	 Abushal, T. A., et al., Statistical Inferences of Burr XII Lifetime Models under Joint Type-1 Competing 
risks Samples, Journal of Mathmetics, 2021 (2021), Dec., pp. 1-16

[9]	 Alghamdi, A. S., et al., Statistical Inference of Jointly Type-II Lifetime Samples under Weibull Compet-
ing Risks Models, Symmetry, 14 (2022), 4, pp. 1-17 

[10]	 Abushal, T. A., et al., Inference of Partially Observed Causes for Failure of Lomax Competing Risks 
Model under Type-II generalized Hybrid Censoring Scheme, Alexandria Engineering Journal, 61 (2021), 
7, pp. 5427-5439

[11]	 Farghal A. A., et al., Analysis of Generalized Inverted Exponential Competing Risks Model in Presence of 
Partially Observed Failure Modes, Alexandria Engineering Journal, 78 (2023), Sept., pp. 74-87

[12]	 Xu, J. Long, J. S., Using the Delta Method Tonconstruct Confidence Intervals for Predicted Probabilities, 
Rates, and Discrete Changes, in: Lecture Notes, Indiana University, Bloomington, Ind., USA, 2005

[13]	 Wang L., et al., Inference for Weibull Competing Risks Model with Partially Observed Failure Causes 
under Generalized Progressive Hybrid Censoring, Journal of Computational and Applied Mathematics, 
368 (2020), 112537

[14]	 Davison, A. C., Hinkley, D. V., Bootstrap Methods and Their Applications, 2nd, Cambridge University 
Press, Cambridge, UK, 1997

[15]	 Efron, B., Tibshirani, R. J., An Introduction the Bootstrap, Chapman and Hall, New York, USA, 1993
[16]	 Efron, B., The Jackknife, the Bootstrap and Other Resampling Plans, Proceedings, CBMS-NSF Regional 

Conference Series in Applied Mathematics, SIAM, Phiadelphia, Penn., USA, 1982, Vol. 38
[17]	 Hall P., Theoretical Comparison of Bootstrap Confidence Intervals, Annals of Statistics, 16 (1988),  

3, pp. 927-953
[18]	 Abed-Elmougod, G. A., El-Sayed M. A., Coefficient of Variation of Topp-Leone Distribution under Adap-

tive Type-II Progressive Censoring Scheme: Bayesian and non-Bayesian Approach, Journal of Computa-
tional and Theoretical Nanoscience, 12 (2016), 11, pp. 4028-4035

[19]	 Hoel, D. G., A Representation of Mortality Data by Competing Risks, Biometrics, 28 (1972), 2, pp. 475-88
[20]	 Pareek, B., et al., On Progressively Censored Competing Risks Data for Weibull Distributions, Comput. 

Statist. Data Anal., 53 (2009), 12, pp. 4083-4094
[21]	 Sarhan, A. M., et al., Statistical Analysis Of Competing Risks Models, Reliability Engineering and Sys-

tem Safety, 95 (2010)., 9, pp. 953-962
[22]	 Cramer, E., Schmiedt, A. B., Progressively Type-II Censored Competing Risks Data from Lomax Distri-

butions, Computational Statistics and Data Analysis, 55 (2011), 3, pp. 1285-1303
[23]	 Al-Essa, L. A., et al., Comparative Study with Applications for Gompertz Models under Competing Risks 

and Generalized Hybrid Censoring Schemes, Aximos, 12 (2023), 4, 322
[24]	 Al-Essa, L. A., et al., Statistical Inference of Joint Competing Risks Models from Comparative Bathtub 

Shape Distributions with Hybrid Censoring, Alexandria Engineering Journal, 86 (2024), Jan., pp. 9-22

Paper submitted: August 10, 2024
Paper revised: October 13, 2024
Paper accepted: October 30, 2024

2024 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.


