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This paper extends the classical Lorenz system to incorporate fractal-fractional 
dynamics, providing a detailed numerical analysis of its chaotic behavior. By ap-
plying Caputo's fractal-fractional operators to the Lorenz system, the study ex-
plores the fractal and fractional nature of non-linear systems. Numerical methods 
are employed to solve the extended system, with suitable fractal and fractional 
orders chosen to demonstrate chaos and hyper-chaos. The results are presented 
graphically, highlighting the complex dynamic behavior of the system under differ-
ent parameter conditions. This research advances the understanding of fractional 
calculus in modelling and controlling chaotic systems in various scientific fields. 
Key-words: fractional derivatives, non-linear equations, simulation,  
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Introduction

During the 17th century, fractional calculus gained significant attention for its appli-
cations in engineering [1], physics [2], mathematical biology [3], as well as psychological and 
life sciences [4]. This specialized branch of calculus has transformed our capacity to model, 
examine, and interpret complex natural phenomena. Numerous interdisciplinary systems, such 
as those in viscoelasticity [5], dielectric polarization [6], electrode-electrolyte interactions [7], 
electromagnetic wave propagation [8], and quantum dynamics [9], are accurately represent-
ed by fractional differential equations. Fractional calculus is particularly effective in captur-
ing chaotic behavior in dynamic systems, with examples including fractional-order models 
of the Lorenz [10-12], Chua's circuit [13], Rossler [14], Chen [15], and Liu systems [16, 17], 
Burke-Shaw [18], Newton-Leipnik [19]. The field primarily utilizes several types of fractional 
derivatives, namely, the Riemann-Liouville, Caputo, Caputo-Fabrizio, and Atangana-Baleanu 
operators, each linked to specific decay and memory characteristics like power laws, exponen-
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tial decay, and the Mittag-Leffler function. The role of fractal-fractional operators is especially 
impactful for real-world applications in fields like engineering, biology, physics, and medicine 
[20-26].

In this paper, we explore chaotic and hyper-chaotic behavior within the context of a 
unified family of chaotic systems, which generalizes the dynamics of three different types of 
Lorenz systems. These systems are distinguished by a key parameter, σ, that determines the 
specific chaotic behavior of the system. The traditional Lorenz system, governed by a single   
parameter, can be described:
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where σ ∈ [0, 0.8). In the fractal-fractional framework, this system (1) is extended:
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where σ,n denote the fractional and fractal orders, respectively. This paper extends the analysis 
of fractal-fractional non-linear systems by translating them into linear equations and conduct-
ing numerical analyses. We construct a fractal-fractional Lorenz model, select appropriate pa-
rameters and initial conditions to demonstrate chaotic behavior, and apply Caputo's fractal-frac-
tional operators. The numerical solutions to the fractal-fractional models are presented, along 
with graphical results, illustrating the system’s behavior under various fractal and fractional 
order settings.

Existence and uniqueness

Our goal is to establish that the system presented in eq. (1) has a unique solution under 
specific conditions. Assume that, for all t ∈ [0, T], the functions u(t), v(t), and w(t) are bounded, 
such that ||u||∞ ≤ N, ||v||∞ ≤ N, and ||w||∞ ≤ N. The system can be written in the form:
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Given that u, v, and w are bounded, the functions gu, gv, and gw will also be bounded. 
Consequently, there exist constants Nu, Nv, and Nw such that: 
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We begin by showing that these functions satisfy the linear growth condition:
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Furthermore, we demonstrate that the functions meet the Lipschitz condition:
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The functions gu, gv, and gw satisfy the Lipschitz condition provided that the maximum 
of |a|, |b|, and |c| is less than 1.

Finally, we confirm that gu, gv, and gw meet both the linear growth and Lipschitz con-
ditions:

 
( )

22
2 22 4

2 4( , , , ) 3e 1 1
3eu v u

v

a u
g t u v w N C u

N

 
 ≤ + ≤ +
 
   

where 

 

2 2

2 4 2 4< 1 and =
3e 3eu

v v

a aC
N N

 

( ) ( )

( )

2 2 2 2 2 2 2

2
2

2 2 2 2

2
2 2

( , , , ) 3(28 35 ) | | 3(29 1) | | 3 | | | |

(29 1)1 | | , with = < 1
(28 35 )

8( , , , ) 1
3

v

v v
u u w

w w

g t u v w u v u w

C v C
N N N

g t u v w uv w C w

η η

η
η

η

≤ − + − + ≤

−
≤ +

− +

+
= − ≤ +

where 

 

2

4
3( 8)= 1w

v
C

eN
η +

<

Application of Adomian decomposition method

The non-linear terms in the system (2) are defined:
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Following (4) are the terms used in the Adomian decomposition series:
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Numerical approach

Under the fractal-fractional-Caputo operator, the numerical approach described by 
(2) is presented. Model (2) is reformulated into Volterra form, since the fractional integral is 
differentiable, so in Riemann-Liouville sense:
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Now, consider substituting the RL derivative with the Caputo derivative to leverage 

the integer-order initial conditions. On both sides, we apply the Riemann-Liouville fractional 
integral:
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where g1, g2, and g3 are defined in eq. (3). We now introduce a novel procedure for the afore-
mentioned model (5) at 1nt + , which transforms our model into: 



Yan, T., et al.: Analysis of a Lorenz Model Using Adomian Decomposition ... 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 5001-5009 5005

1 0 1 1
1 1

0

1 0 1 1
1 2

0

1 0 1 1
1 3

0

= ( ) ( , , , )d
( )

= ( ) ( , , , )d
( )

= ( ) ( , , , )d
( )

t
n

n

t
n

n

t
n

n

u u t g u v w

v v t g u v w

w w t g u v w

β α

β α

β α

β τ τ τ τ
α

β τ τ τ τ
α

β τ τ τ τ
α

+ − −
+

+ − −
+

+ − −
+

+ −
Γ

+ −
Γ

+ −
Γ

∫

∫

∫

(6)

Approximating the integrals (6) gives:
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Now, approximating the function τ β–1gi (u, v, w, τ) for i = 1, 2, 3 in the interval [tj, tj+1] using Lagrange piece-wise interpolation yields: 
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Thus, using (8), system (7) becomes:
1

1 0 1 1
1

=0

1
1 0 1 1

1
=0

1
1 0 1 1

1
=0

= ( ) ( )d
( )

= ( ) ( )d
( )

= ( ) ( )d
( )

t jn
n

n j
j t j

t jn
n

n j
j t j

t jn
n

n j
j t j

u u t G

v v t H

w w t J

β α

β α

β α

β τ τ τ τ
α

β τ τ τ τ
α

β τ τ τ τ
α

+
+ − −

+

+
+ − −

+

+
+ − −

+

+ −
Γ

+ −
Γ

+ −
Γ

∑ ∫

∑ ∫

∑ ∫

(9)



Yan, T., et al.: Analysis of a Lorenz Model Using Adomian Decomposition ... 
5006 THERMAL SCIENCE: Year 2024, Vol. 28, No. 6B, pp. 5001-5009

Thus (9) leads us to the formulations: 
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Numerical simulation and discussions

The numerical simulations of the system (2) are presented in figs 1-6, for σ = 1, n  = 1, 
σ = 1, n  = 0.95, σ = 1, n  = 0.90, respectively.

Figure 1. Numerical simulation for the system (1) at σ = 1, n = 1

Figure 2. Time series solution of (1) at σ = 1, n = 1 

 
Figure 3. Numerical simulation for the system (1) at σ = 1, n = 0.95 
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Figure 4. Time series solution of (1) at σ = 1, n = 0.95 

Figure 5. Numerical simulation for the system (1) at σ = 1, n = 0.90 

 
Figure 6. Time series solution of (1) at σ = 1, n = 0.90 

Discussion 

This section advocates for the use of fractal-fractional operators in modelling to in-
corporate memory and hereditary properties, thus enhancing the accuracy of chaotic systems 
such as the Lorenz system. The exploration of chaotic and hyper-chaotic behaviors was facili-
tated by varying fractal orders (σ, n) under different parameter conditions. The fractal-fractional 
approach also shows promise for improving control in applications like electrical circuits and 
climate dynamics. Numerical simulations, figs. 1-6, illustrated how altering fractional orders, σ,  
and fractal dimensions, n, influenced system behavior, particularly noting that decreasing n led 
to progressively dampened chaotic oscillations and more stable dynamics. The findings under-
score the system’s sensitivity to small variations in fractal parameters, which could reflect noise 
or uncertainty. The effectiveness of the fractal-fractional ADM was discussed, highlighting its 
capability to break down non-linear terms for quicker and more efficient solution computa-
tion. Compared to traditional methods, ADM demonstrated robustness for complex systems 
exhibiting fractional and fractal behavior. This model can be applied to physical systems where 
integer-order models fail to capture important details, emphasizing the relevance of long-term 
memory effects in fields like electrical engineering, climate science, and biology.

Conclusion

The study successfully integrated fractal-fractional dynamics into the classical Lo-
renz system, effectively capturing and analyzing complex chaotic and hyper-chaotic behaviors 
through the introduction of fractional and fractal orders. The ADM proved to be an efficient 
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numerical technique for solving such non-linear systems, allowing for accurate computation of 
approximate solutions by decomposing non-linear terms. Numerical results indicated that frac-
tional and fractal orders significantly influenced system dynamics, with lower fractal dimensions 
leading to reduced chaotic behavior. This suggests the potential of fractal-fractional calculus 
for controlling chaos in non-linear systems, applicable across various fields, including climate 
dynamics, engineering, and biology. The findings emphasize the utility of fractal-fractional op-
erators in accurately modelling complex systems where memory and hereditary effects are crit-
ical. Future research could explore incorporating stochastic effects or time-varying parameters 
to further enhance the model’s applicability to real-world chaotic phenomena. This study lays a 
solid foundation for future inquiries into fractal-fractional dynamic systems and chaos control.
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