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In the paper, the 1-D wave equation and non-linear diffusion equation are consid-
ered and the approximate solutions are obtained by using the variational iteration 
method. The obtained results show that the proposed method is efficient and simple.
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Introduction

Non-linear PDE are used to describe complex problems in the fields of machines, con-
trol process, ecological and economic system, chemical circulation system and epidemiology. 
However, it is very difficult for us to find their exact solutions. Recently, many effective and 
powerful methods have been presented to approximate the exact solution of non-linear PDE, 
such as Backlund transformation [1], Hirota’s bilinear method [2], Darboux transformation [3] 
and the tanh method [4], and many others methods [5-12].

The variational iteration method (VIM) [13, 14] has been proved to be a useful mathe-
matical tool for solving non-linear differential equations. In recent years, with the development 
of variational iteration method, this method has been successfully applied to many aspects such 
as: The Z-K equations [15], coupled Burger’s equation [16] and various engineering problems 
[17], etc. 

In the paper, 1-D wave equation and non-linear diffusion equation are studied by 
variational iteration method, and the approximate solutions of 1-D equation and non-linear 
diffusion equation are obtained successfully by using VIM. Finally, the effectiveness of VIM is 
proved by error comparison.

The variational iteration method 

To illustrate this basic method, we consider the non-linear partial differential equation:
( , ) ( , ) ( , )Lu t x Nu t x f t x+ = (1)

where L is the linear operator, N – the non-linear operator, and f(t, x) – the continuous function.
According to the VIM, we can construct an equation:

{ }1
0

( , ) ( , ) ( , ) ( , ) ( , ) d
t

n n n nu t x u t x Lu s x Nu s x f s x sλ+ = + + −∫  (2)
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where λ is the general Lagrange multiplier which can be identified optimally via the variation 
theory, u~n – the restricted variation, i.e., δu~n = 0 and the subscript n denote the nth-order approx-
imation. 

The 1-D wave equation

Considering the wave equation:
2 , , 0tt xxu c u x t= −∞ < < ∞ > (3)

with the initial conditions:

	 (0, ) ( ), (0, ) g( )tu x f x u x x= =

The correction functional of this equation can be written down:
2 2

2
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n n
n n

u u
u u c s

s x
λ+

 ∂ ∂
= + − 

∂ ∂ 
∫



(4)

Making the aforementioned correction functional stationary, and noticing that u~n is 
considered as a restricted variation:
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u u
u u c s u u u u s

s x
δ δ δ λ δ λδ λ δ λ δ+ = =

 ∂ ∂ ′ ′ ′′= + − = + − + = 
∂ ∂ 

∫ ∫

generates the stationary conditions:

:1 ( , ) 0, : ( , ) 0,  : ( , ) 0
sn s n n ssu t x u t x u s xδ λ δ λ δ λ− = = = (5)

Therefore, the Lagrange multiplier is identified:
s tλ = − (6)

Substituting this values of Lagrange multiplier λ = s – t into the functional eq. (4) 
yields the iteration formula:
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n n
n n

u u
u u s t c s

s x+

 ∂ ∂
= + − − 

∂ ∂ 
∫ (7)

Example 1. Consider the wave equation [18]:

, , 0tt xxu u x t= −∞ < < ∞ > (8)

with the initial conditions:
(0, ) sin( ),  (0, ) cos( )tu x x u x x= = (9)

The correction functional of this equation is of the form:
2 2

1 2 2
0

( ) d
t

n n
n n

u u
u u s t s

s x+

 ∂ ∂
= + − − 

∂ ∂ 
∫ (10)

Taking into account the specified initial condition, we select u0 = sinx + tcosx. Using 
this selection into eq. (10), we obtain the following successive approximations:



Zhang, L.-H., et al.: A Powerful Analytical Method to Some Non-Linear Wave ... 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 4B, pp. 3553-3557	 3555

0

2 3

1

2 4 3 5

2

2 4 2 3 5 2 1
1 1

sin cos

sin 1 cos
2! 3!

sin 1 cos
2! 4! 3! 5!

sin 1 ( 1) cos ( 1)
2! 4! 2 ! 3! 5! 2 1!

n n
n n

n

u x t x

t tu x x t

t t t tu x x t

t t t t t tu x x t
n n

+
− −

= +

   
= − + −   

   
   

= − + + − +   
   

   
= − + + − + − + + −   +   



(11)

Letting n → ∞, we get

 	
lim sin cos cos sin sin( )nn

u u x t x t x t
→∞

= = + = +

This gives the exact solution by u = sin(x + t).

Non-linear diffuse equations

	 Consider the non-linear diffuse equations:

( )m
t x xu u u= (12)

with initial condition u(0, x) = f(x).
By VIM, the correction function of eq. (12) reads of the form:

1
0

d
t

mn n
n n n

u u
u u u s

s x x
λ+

∂ ∂ ∂  = + −  ∂ ∂ ∂  
∫ (13)

This yields the stationary conditions:

	 1 0,   0s t s tλ λ= =′+ = − =

This in turn gives: λ = –1. 
This value of the Lagrange multiplier is substituted into eq. (13) to obtain the iterative 

formula:
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t
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n n n

u u
u u u s

s x x+

∂ ∂ ∂  = − −  ∂ ∂ ∂  
∫ (14)

Example 2. Solve the PDE:

t
uu u

x x
∂ ∂ =  ∂ ∂ 

(15)

with initial condition: u(0, x) = x2/c, where c > 0, and c is arbitrary constants.
The exact solution of this equation is u = x2/(c –6t). 
The correction functional for this equation is written:

1
0

d
t

mn n
n n n

u u
u u u s

s x x+

∂ ∂ ∂  = − −  ∂ ∂ ∂  
∫ (16)

The given initial conditions taken into account, selecting u0 = x2/c give the successive 
approximations:
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(17)

Therefore, we obtain the solution of eq. (15) as un = x2/(c – 6t) in a closed form, which 
is an exact solution. In addition, fig. 1 and tab. 1 are used to compare u4 with the exact solution 
of eq. (15), demonstrating the convergence of the VIM.

Figure 1. Comparison between the 4-iterate of VIM and the exact solution for Example 2 where c = 2 

Table 1. Absolute errors between the 4-iterate of VIM and the  
exact solution for Example 2 where c = 2 

t x u4 u Errors
0.03 0.02 2.1816 ⋅ 10–4 2.1918 ⋅ 10–4 1.6213 ⋅ 10–6

0.06 0.04 9.4051 ⋅ 10–4 9.7561 ⋅ 10–4 2.6104 ⋅ 10–5

0.09 0.06 2.3310 ⋅ 10–3 2.4658 ⋅ 10–3 1.3476 ⋅ 10–4

0.12 0.08 4.5550 ⋅ 10–3 5.0000 ⋅ 10–3 4.4415 ⋅ 10–4

It can be seen that the error between the fourth iteration solution of VIM method and 
the exact solution is relatively small. This shows that the approximate solution is efficient.

Conclusion

In this paper, the iterative models of 1-D wave equation, non-linear diffusion equation 
are developed by the VIM. The results show that the approximate solutions of the aforemen-
tioned equations can be easily obtained by using the VIM. By analyzing the approximate solu-
tion, it can be concluded that the VIM is an efficient and accurate method.
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