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In recent years, the theory of local fractional calculus has been widely used in the 
description of the fractional circuits. This paper presents a fractal RLC-paral-
lel resonant circuit (FRLC-PRC) using the local fractional derivative (LFD). The 
FRLC-PRC is modeled by studying the non-differentiable (ND) lumped elements, 
then the ND conductance is obtained with the help of the local fractional Laplace 
transform (LFLT) and the ND parallel-resonant angular frequency (ND PRAF) is 
analyzed. It is found that the FRLC-PRC becomes the ordinary one when the frac-
tional order δ = 1. The obtained results show that the LFD is a powerful tool in the 
description of fractal circuit systems. 
Key words: fractal RLC-parallel resonant circuit, local fractional derivative, 
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Introduction 

The theory of fractional calculus has been put forward for more than 300 years. At 
first, due to the lack of application background, its development is slow and there is no sub-
stantive research progress. In recent years, many researchers have been devoted to extending 
the traditional integer order system to the fractional order domain and exploring the new char-
acteristics and laws of fractional order system. Therefore, the theory of fractional calculus has 
become a research hotspot, and has been widely used in many fields, such as porous media 
[1-3], oscillator [4], physics [5, 6], diffusion [7, 8], chaotic system [9] and other fields. The 
existing research results show that the system has more possibilities, flexibility and DoF due to 
the introduction of new fractional order variables. Recently, a new definition of LFD proposed 
by Yanghas attracted a lot of attention in various fields such as physics [10-12], diffusion [13], 
wave [14], circuits [15, 16] and so on. This paper mainly develops a new FRLC-PRC using the 
LFD motivated by recent work in the fractal circuit systems.

Basic definitions 

Definition 1. The local fractional derivative of function j(v) with the fractal dimen-
sion, δ, (< 0 < δ ≤ 0) is defined as [17]:
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Definition 2. The Yang’s sine function, Yang’s cosine function and Mittag-Leffler 
function on Cantor sets with the fractal dimension ℵ are defined [17]: 
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where k ∈ N. 
Definition 3. Suppose the Yang local fractional Laplace type transform of function 

j(v) expressed:
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there is the definition [17]:
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where LN is the LFLT operator.
Theorem 1. There is the theorem for the LFLT of function j(v) with high order [17]:
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The ND lumped elements and KCL 

The ND capacitor  

The relation between the ND charge Φδ(v) and ND iδ(v) within the LFD can be ex-
pressed [18]: 
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Definition 4. The ND capacitance of the ND capacitor (NDC) can be defined [18]:
,
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where uδ,C(v) indicates the ND voltage of the ND capacitor (NDC). By using eqs. (7) and (8), gives:
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The ND inductor

According to the Faraday law of electromagnetic induction, there is the relation be-
tween ND magnetic flux Φδ(v) and ND voltage:
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Definition 5. We define the ND inductance of the ND inductor (NDI) within the LFD as [18]:
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By combining eqs. (10) and (11), we have:
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The ND resistor 

Definition 6. We get the Ohm’s Law of the ND resistor (NDR) as:
,
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where uδ,R(τ), iδ,R(v), and Rδ represent resistance value, the ND voltage, and ND current of the 
ND resistor (NDR), respectively.

Kirchhoff ’s Current Law 

Theorem 2. The Kirchhoff Current law (KCL) is expressed in detail that at any node 
in the circuit,at any moment, the sum of the current flowing into the node is equal to the sum of 
the current flowing out of the node, which can be expressed:

0Ni =∑ (14)

The FRLC-PRC modeled by LFD

The FRLC-PRC modeled by the LFD is shown in fig. 1, there is the following expres-
sion according to the parallel theory:
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According to eq. (12), there is: 
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By using eq. (15), we obtain: 
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We now plug eq. (17) into the eq. (13), 
giving:
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Figure 1. The FRLC-PRC model within LFD
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Similarly, there is:
,
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By using eq. (19) and eq. (9) produces the expression:
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Applying the KCL, yields:
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Take substitution of eqs. (18) and (20) into eq. (21), yields:
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With the help of eqs. (15) and (16), we have:
,

,
d ( )

( )
d

L
i

i v
u v L

v

δ
δ

δ δ δ= (23)

Having LFLT for eqs. (22) and (23), respectively, gives:
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Forzero-state of the circuit that iδ,L(0) = 0, eqs. (24) and (25) can be reduced:
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Dividing eq. (26) by eq. (27) to get: 
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where Gδ is the ND conductance, and Gδ = 1/Rδ. Based on the aforementioned expression, we 
get the ND input admittance by letting λ = iϖ as: 
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Then we can get the modulus value of input admittance:
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when the ND circuit resonates, the ND input voltage and ND current are in the same phase, and 
input admittance imaginary part is zero:
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which gives
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where ϖδ,0 
is the ND resonant angular frequency (ND RAF). When resonance occurs, the input 

admittance has the minimum modulus, the ND input admittance is a pureconductance, and 
the shunt part of NDC and NDI is equivalent to an open circuit. It is easily seen that different 
ϖδ,0 can be obtained by using different LN, CN and fractional orders δ. It’s interesting that when  
δ = 1, the fractal RLC-parallel resonant circuit becomes the ordinary one, the ND input admit-
tance:
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and the ND resonant angular frequency changes:
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In accordance with eq. (26), the ratio of the modulus of the ND input voltage to the 
modulus of the ND input current:
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Conclusion

By studying the ND lumped elements within the LFD, we successfully propose the 
FRLC-PRC for the first time, then the ND conductance and ND PRAF are obtained with help of 
the LFLT. The ND PRAF and the characteristics of FRLC-PRC are analyzed by using different 
input signals and parameters in detail. Interestingly, it is found that the FRLC-PRC becomes the 
ordinary one in the special situation δ = 1. The obtained results are expected to open some new 
perspectives towards the characterization of ND electric circuits via LFD.
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