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 In this paper, a novel box-type scheme with convergence order O(τ3–α + h2) is con-
structed for the fractional sub-diffusion equation with spatially variable coefficient 
under Neumann boundary conditions. Using L2 formula and the energy method, 
stability of the scheme are proved. A numerical example is carried out and the 
result meets with the theoretical analysis.
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Introduction

 In recent decades, numerous researches were focused on the time fractional sub-dif-
fusion equation (FSDE), which can be derived by applying fractional derivatives to simulate 
anomalous diffusion.

An efficient approximation for the time fractional derivative is the so-called L1 meth-
od, which came from the piecewise linear interpolate. Sun et al. [1] presented a difference 
scheme for this equation using L1 approximation, and proved the truncation error to be of 2 – α 
order in time direction. Zhao et al. [2] proposed a box-type scheme for FSDE under Neumann 
boundary conditions. Applying piecewise quadratic interpolating polynomials, Alikhannov [3] 
derived a numerical analog (so called L2 – 1σ formula) for the Caputo fractional derivative and 
got order O(τ3 – α). In [4] the L2 – 1σ formula was applied for the time multi-term, and distributed 
order FSDE. In [5], Alikhanov constructed a L2 type difference analog for the fractional Caputo 
derivative with the approximation order O(τ3 – α) in time. Yang [6] suggested the mathematical 
conjectures for the Fourier integrals with fractional diffusion equation in the sense of Caputo 
derivative.

Until recently, we find that there are hardly any reports on the difference scheme with 
accuracy exceeding second order in time direction for FSDE under Neumann boundary condi-
tion. In this paper, we aim to construct a box-type difference scheme with the order of O(τ3 – α) 
in time direction. 

Derivation of the box-type difference scheme

Consider the FSDE under Neumann boundary conditions:

0 ( , ) = ( ) ( , ), 0 , 0 <C
t

uu x t x f x t x L t T
x x

α ϕ∂ ∂  + ≤ ≤ ≤ ∂ ∂ 
 (1)
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denotes the Caputo fractional derivative and α ∈ (0, 1). We take ux(0, t) = ux(L, t) = 0 for simpli-
fication. There exists constants l1 and l2 such that 0 < l1 ≤ φ(x) ≤ l2. Giving integers M and N , let

  
= , = , = , = { | 0 }, = , and = { | 0 }i h i n n

L Th x ih x i M t n t n N
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We denote
 0 1 0 0 1 0= { | = ( , , , )} and = { | = ( , , , ), = = 0}h M h M MU u u u u u U u u u u u u u   
as the grid function spaces. Now we introduce some notation and lemmas for our analysis. 
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where n ≥ 4. We have the lemmas below for the property of al, bl, and ck
(n).

Lemma 1. [5] For any α ∈ (0, 1) and ck
(n) (0 ≤ k ≤ n – 1, n ≥ 3), it holds that:
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For any grid function u, denote:

 
( )

1
( ) ( ) ( )( ) 0
0 1 1

=1

= , 2
(2 )

n
n n nn n j

t n jn j nn
j

u c u c c u c u n
α

α τ
α

−−

−− − −

 
 ∆ − − − ≥

Γ −   
∑

 



Zhang, P., et al.: A Novel Box-Type Scheme for Variable Coefficient ... 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 4B, pp. 3435-3441 3437

 which is the L2 formula. For it’s error, we have:
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t t t t nn n

u t u O u t C t nα α ατ −−∆ ∈ ≥

Let
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the problem (1)-(3) is equivalent to:
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We define the grid functions:
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Supposing (4,3)
,( , ) ([0, ] [0, ])x tu x t C L T∈ ×  we consider eqs. (7) and (8) on ( )1/2 ,j nx t+ , 

using Taylor expansion see:
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Seeing the initial and boundary conditions (9)-(10), and omitting error terms in eqs. 
(11) and (12), we derive the box-type difference scheme for eqs. (7)-(10):

1/2 1/2 1/2= , 0 1, 2n n
t j x j jn

u v f j M n Nα δ+ + +∆ + ≤ ≤ − ≤ ≤ (14)

1/2 1/2 1/2= ( ) , 0 1, 0n n
j j x jv x u j M n Nϕ δ+ + + ≤ ≤ − ≤ ≤ (15)

0 = 0, = 0, 1n n
Mv v n N≤ ≤ (16)

0 = ( ), 0j ju x j Mφ ≤ ≤ (17)

Analysis of the box-type scheme

For u, v ∈ Uh, define: 
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The following Lemmas will be helpful for our analysis of the box-type scheme. 
Lemma 2. [5] For any grid function u defined on grid Ωτ, we have: 
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Lemma 3. [2] Suppose u ∈ Uh, then for any positive constant, ϵ, it holds that 
2
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4 x
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(19)

Theorem 1. (Stability) Suppose

  { }| 0 , 0n
ju j M n N≤ ≤ ≤ ≤

is the solution of the following difference eqs. (14)-(17), then there exists some constant, K, 
independent of h, and τ, such that:
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Proof 1. First we estimate ||δxun||. 
Employing the L2 approximation operator Δα

tn and dividing φ(xj+1/2) then Multiplying 
the result by:

  
1/2

1/
to see , = ,n n n

j t t xn n
hv v v u vα α

ϕ
δ+ ∆ ∆

Multiplying (14) by:

  
2

1/2 , we obtain , = ,n n n n n
x j t x x xn

h v u v v f vαδ δ δ δ+ ∆ +

Adding them to give:
2

1/
, = , , ,n n n n n n

x t t x t x xn n n
v v v u v u v f vα α α

ϕ
δ δ δ δ+ ∆ ∆ + ∆ − (21)

Noticing that v n0 = v nM = 0, we can deduce that
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Substituting it into eq. (21), and combining with Cauchy-Schwartz inequality to know:
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Substituting eq. (23) into eq. (22), and summing up for n from 5 to N to give:
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 In view of eq. (24), and notice that bn–1 > bn > 0, then we have:
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We have the following estimations.
There exists a constant k1 independent of h and τ, such that:

 

3 42 2(5) (5) 1
14 3 1/ 1/

0 1
1 1 12 2 2( ) ( )1 1 1

1 11/ 1/ 1/
0 0 0

1
( )

1
5 5 5 2

1 1 1

1
2

11 1
16

1 d= (1 )
( 1) ( 1)

d(1 ) = ( 1) 3 < ( 1)

s n
s

s n
N N N

N Ns s s
N s N

s s s
nN N N

n
n

n n n n

E c v k v

c v c v v
N

xc
n n

x N N
x

ϕ ϕ

αϕ ϕ ϕ

α α

α α α
α

α

α α

α

+
−

= =
− − −

+ + +
− − −

= = =
−

−
= = = −

− − −

+ ≤

−
≥ ≥

−
≤ −

− −

≤ − − − −

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∫
1

5 2

nN

n n

−

= −
∑ ∫



Zhang, P., et al.: A Novel Box-Type Scheme for Variable Coefficient ... 
3440 THERMAL SCIENCE: Year 2024, Vol. 28, No. 4B, pp. 3435-3441

and 
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Using these estimations, we have:
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Multiplying it by Nατ, and seeing eq. (15), we know there exists a constant K1 such 
that:
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Applying the similar analysis to estimate ||un||, and seeing Lemma 3, we get eq. (20) 
and finish the proof. 

Using the similar analysis, we can get convergence for the scheme (14)-(17). 
Theorem 2. (Convergence) Suppose
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Numerical experience

Example 1. We take
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= −

for the problem (1)-(3), then the exact solution is

  
2 3( , ) = .xu x t e t α+

We solve the problem with scheme (14)-(17). The convergence order in temporal 
is tested by taking fixed spatial step h = 1/20000. The computational errors and convergence 
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orders in the maximum norm are listed in tab. 1. The results are consistent with our theoretical 
analysis. 

Table 1. The error and convergence order in temporal direction with h = 1/20000 
α = 0.2  α = 0.5  α = 0.8

τ E∞(h, τ)  Order (τ) E∞(h, τ)  Order (τ) E∞(h, τ)  Order (τ)
1/10  2.0512 ⋅ 10–3 *  1.4179 ⋅ 10–2  * 5.7486 ⋅ 10–2  * 

1/20  3.3342 ⋅ 10–4 2.6210  2.8559 ⋅ 10–3 2.3117 1.4386 ⋅ 10–2 1.9986 

1/40  5.1631 ⋅ 10–5 2.6910  5.3520 ⋅ 10–4 2.4158 3.3058 ⋅ 10–3 2.1216 

1/80  7.7652 ⋅ 10–6 2.7331  9.7472 ⋅ 10–5 2.4570 7.3627 ⋅ 10–4 2.1667 

1/160  1.1203 ⋅ 10–6 2.7931  1.7564 ⋅ 10–5 2.4723 1.6197 ⋅ 10–4 2.1845 

1/320  1.4880 ⋅ 10–7 2.9125  3.1526 ⋅ 10–6 2.4780 3.5456 ⋅ 10–5 2.1916 

Conclusion

In this paper, we construct a box-type difference scheme with convergence order  
O(τ3– α + h2) for FSDE which has Neumann boundary conditions. Using L2 formula, we get the 
stability and convergency of the scheme. A numerical example is implemented to testify the 
scheme.
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