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This study, based on static data from over a thousand fracturing wells, employs 
data governance, data mining, and machine learning regression uncover princi-
pal controlling factors for production in the fracturing context. Utilizing multiple 
evaluation methods, the entropy weight method comprehensively scores and ranks 
the principal controlling factors. A machine learning production prediction model 
is established for validation. Results show that DBSCAN achieves better accuracy 
in identifying field anomaly data. For missing data, it is recommended to use tree 
models or neural networks instead of imputation or constant filling, as incorrect 
imputation significantly degrades model performance. The entropy weight meth-
od effectively integrates various correlation analysis results, providing a better 
connection with production compared to other approaches. This research utilizes 
large-scale field data to extract key parameters affecting production, supporting 
the establishment of high precision prediction models and the optimization of pa-
rameters for unconventional reservoir production forecasts
Key words: hydraulic fracturing design, data-driven model, machine learning, 

production forecasting, hyperparameter optimization, 
feature selection

Introduction

Horizontal well fracturing is crucial for unconventional oil and gas development, ne-
cessitating accurate post-fracturing production prediction for optimal parameter adjustments 
[1-4]. However, mechanistic models are time-consuming, hindering on-site development and 
rapid optimization, particularly in heterogeneous reservoirs [5]. With 1226 fracturing opera-
tions in Xinjiang oilfields, significant data is available for big data research. This study employs 
big data and artificial intelligence to manage on-site data, analyze production-controlling fac-
tors, and establish machine learning models for efficient fracturing design in unconventional 
oil reservoirs. Researchers have employed correlation algorithms and model evaluation meth-
ods to assess the relationship between well parameters and production, identifying principal 
controlling factors [6, 7]. Machine learning techniques, such as dimensionality reduction and 
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feature synthesis, capture non-linear connections between geological engineering parameters 
and production [8, 9]. 

In summary, machine learning-based analysis of principal controlling factors and pro-
duction forecasting has shown initial effectiveness. However, challenges such as small sample 
size and limited parameter ranges persist. This paper collects fracturing well data, conducts 
data governance and mining, comprehends principal controlling factors, and builds a machine 
learning production forecasting model based on field data from Xinjiang oilfield, contributing 
to improved predictions and optimization.

Material and method

Data collection

This study compiled a dataset from Xinjiang oilfields, consisting of 1226 hydrauli-
cally fractured horizontal wells with 44 feature parameters. After preliminary cleaning, wells 
with a single well data missing rate exceeding 40% and parameters with a data missing rate 
exceeding 80% were excluded. The dataset includes geological, engineering, and production 
data. Parameters such as horizontal section length, porosity, permeability, oil saturation, res-
ervoir length, and reservoir type constitute geological and engineering data. Engineering data 
include modified section length, number of fractured sections, number of fracture clusters, 
liquid intensity, proppant intensity, pre-flush fluid ratio, slip water ratio, maximum construction 
displacement, and average sand ratio. Geological and engineering data serve as input features 
during model training, while production data mainly involve cumulative oil production over 
330 days per unit of modified section length, serving as the output target during model training. 
The data were normalized to the [0, 1] interval, and kernel functions were employed to describe 
the data distribution, as shown in fig. 1.

Figure 1. Waterfall plot depicting the kernel density distribution of selected data points

Upon observation of fig. 1, it is evident that the overall data distribution is uneven, 
with some data exhibiting a left-skewed pattern. Anomalies are particularly noticeable in pa-
rameters such as porosity, proppant intensity, and construction displacement, where significant 
outliers are present.

Data governance

Data governance encompasses outlier identification, missing value imputation, and 
categorical data encoding, as illustrated in fig. 2.
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Figure 2. Data governance methods; (a) DBSCAN outlier identification,  
(b) the KNN missing value imputation, and (c) one-hot encoding of label data

To handle outlier data, we used the DBSCAN unsupervised clustering method. DB-
SCAN, a density-based clustering algorithm, categorizes and filters outliers by assessing the 
density of neighboring data points. For missing data, various methods were employed, includ-
ing zero filling, mean imputation, and KNN modelling imputation. The KNN imputation ref-
erences known data from neighboring samples, improving imputation quality with different 
reference sample sizes. 

Feature importance evaluation

This study employs grey correlation and maximum mutual information for correlation 
analysis, along with embedded feature evaluation and SHAP post-interpretation assessment for 
importance evaluation. Utilizing results from various principal control analysis methods, it es-
tablishes an evaluation matrix for a comprehensive assessment of parameters through weighted 
calculations.

The entropy weight method is an objective weighting technique that determines the 
weights of indicators based on the information entropy of each indicator. The calculation for-
mula:
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where Eb is the data vector of evaluation indicator b in the evaluation matrix, nab – the normal-
ized score value of evaluation parameter a for the positive evaluation indicator b, n – the num-
ber of evaluation parameters, m – the number of evaluation indicators, and Rb – the information 
entropy value of evaluation indicator b. The entropy weight of evaluation indicator b reads:
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Finally, the evaluation matrix E is multiplied by the indicator weight vector ω to ob-
tain the comprehensive evaluation vector s, given:
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where ζ is the evaluation vector obtained from the grey relational analysis, M – the evalua-
tion vector obtained from the maximum mutual information, J – the feature importance vector 
obtained from embedded feature evaluation, and φ – the evaluation vector obtained from the 
SHAP method.

Results and discussion

Model performance

The training data underwent DBSCAN 
outlier removal, with no imputation for miss-
ing values. A test set, comprising 20% of the 
total dataset, was separated and excluded from 
training. Utilizing the AutoGluon framework, 
the training process involved 5-fold cross-vali-
dation bagging and a 2-layer stacking approach, 
using RMSE as the loss function. The training 
results, as depicted in fig. 3., show an average 
error of 0 and an R2 of 1 for the training set. For 
the test set, the RMSE is 2.630, MSE is 6.919, 
MAE is 1.588, and R2 is 0.768.

Comparison of data governance methods
The dataset was managed using DBSCAN, three standard deviations, and IQR meth-

ods to identify outliers, along with KNN nearest neighbor pre-diction, constant, and mean value 
imputation for handling missing values or not han-dling them, respectively. The model training 
results are compared in fig. 4.

Figure 4. Test metrics for different data governance combinations

Analysis of controlling factors

The results of grey relational analysis, maximum mutual information, embedded fea-
ture evaluation, SHAP analysis, and entropy weight analysis are depicted in fig. 5.

In the experiment with varying input feature quantities, the model error is minimized 
when the feature quantity is set to the top 4 parameters, as illustrated in fig. 6. As the feature 
quantity further increases, the model error gradually increases. For different feature evaluation 
methods, subsets of data were created by taking the top four parameters and inputting them into 
the model for training, T.

Figure 3. Comparative chart of AutoGluon 
prediction results
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Figure 5. Evaluation of parameter importance

Figure 6. Impact of different principal evaluation methods on model accuracy

Conclusion
The results demonstrate that DBSCAN can achieve better identification accuracy for 

field anomaly data, whereas the IQR method and 3-sigma method exhibit a broader range of 
misjudgments, significantly compromising data integrity. It is not advisable to impute or use 
constant filling for missing data. Instead, tree models or neural networks should be employed 
to handle missing values automatically, as incorrect data imputation can lead to a substantial 
decline in model performance. The entropy weight method effectively integrates the results of 
various correlation analysis methods. The combination of principal controlling factors selected 
using this method exhibits a stronger correlation with production compared to other approach-
es. These principal controlling factors can be combined into a feature subset for input into the 
model, and the reasonableness of the principal evaluation can be judged based on the changes 
in model accuracy. This research effec-tively utilizes large scale field data to extract key param-
eters affecting production, providing technical support for the establishment of high precision 
prediction models and the optimization of parameters for unconventional reservoir production 
forecasts.
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