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In this paper, we proposed and investigated a class of Monkeypox infectious 
mathematical model between human and animal populations, with a particular 
focus on interventions targeting early-exposed population. The model involves 
a more realistic incidence term and the possible stochastic perturbations. We 
conducted a detailed mathematical analysis of the corresponding deterministic 
model, including the existence of solutions to the equations, the existence of equi-
libria, the basic reproduction number, R0, and the local stability of equilibria. 
Then we turned to the stochastic model, and obtained the sufficient conditions 
of the disease eradication and sustained persistence of the stochastic system. 
Finally, we conducted numerical simulations to validate the proposed models 
and validated that the stochastic interaction is a crucial factor for studying the 
infectious disease. The results indicated that the detection and intervention of 
early-stage infected individuals have significant impact on the control of the dis-
ease transmission.
Key words: deterministic model, stochastic perturbation,  

Monkeypox, stability analysis

Introduction

Monkeypox (Mpox) is a zoonotic disease caused by the Mpox virus which belongs 
to the Orthopoxvirus genus. This disease is found in rodents such as squirrels, rats and mice 
rather than monkeys and is transmitted from them to humans [1]. Monkeypox virus (MPXV) 
can be transmitted from animals to human beings through direct contact with infected animal’s 
fluid, meat, and scratches or bites from animals. The Mpox typically has three phases: incu-
bation, prodrome, and the eruptive stage. The MPXV has an average incubation period of 13 
days (range from 5-21 days). The fatality rate ranges from 0-15% [2]. Early signs of Mpox may 
resemble those of chickenpox but lymphadenopathy is a distinctive feature of Mpox. During 
the eruptive phase, skin lesions appear in a centrifugal distribution and progress through several 
stages: macules, papules, vesicles, and finally, pustules [3].

Mathematical models have been proved to enhance our understanding of the spread 
and control of infectious diseases, especially those capable of capturing the multi-stage aspects 
of the disease [4]. In recent research work on modelling Mpox transmission [5], the incidence 
rate of animal to human infection is βaIa/Na. The author also considered the boundary equilibri-
um and analyze using numerical methods in [6]. However, the incidence rate from infected-an-
imals to human beings is typically lower than the human-to-human transmission. Therefore, 
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using βaIa/Na to depict the infection term from animals-to-humans is more appropriate which 
is rarely used [7]. In practical scenarios, numerous confounding factors affect disease trans-
mission. Many researchers employ stochastic mathematical models to better understand the 
dynamics of infectious diseases [8]. A minority of references have considered the impact of 
stochastic factors on propagation. Fractional-order stochastic modelling [9], probabilistic for-
mulation with Levy jumps model are also be used to modelling the transmission of Mpox [10].

In our study, it is considered that the Mpox infection can be more easily traced to 
early-stage infected individuals due to its typical symptoms. Hence, it’s crucial to involve the 
exposed population and removed population in modelling due to early identity, artificial treat-
ment and isolation measures. 

Deterministic model

In this section, we have proposed a deterministic model of Mpox infection while 
considering early-exposed populations. The human host population is categorized into four 
compartments: susceptible, Sh(t), exposed in the early stages, Eh(t), infected, Ih(t), and re-
moved, Rh(t). We divided the animal host populations into three variables in model: suscepti-
ble populations, Sa(t), infected populations, Ia(t), and removed populations, Ra(t). As humans 
can be infected by both infected animals and infected humans, sub-humans population, Sh, 
is decreased by infection via two modes: transmission from infected animals, denoted by βa2IaSa/Na,  
and transmission from infected humans, denoted by βhIhSh/Nh. We consider the removed rate, 
γ1, due to human intervention or isolation. Since exposed animals may not be isolated or treat-
ed, the system does not explicitly consider exposed compartments and uniformly classifies 
them as infected animal populations. Table 1 provides a summary of the parameters and their 
respective meanings. The transmission diagram is listed in fig. 1. Then, the model can be rep-
resented by ODE: 
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Table 1. Description of population division and the parameter in the system (1)
 Variable/
Parameter  Description

Nh  Total population of humans
Sh  Population of susceptible humans 
Eh  Population of humans exposed in the early stages
Ih  Population of infected humans
Rh  Population of removed humans
Na  Total population of animals
Sa  Population of susceptible animals 
Ia  Population of infected animals
Ra  Population of removed animals

Πh/Πa  Recruitment rate of humans/animals 
µh/µa  The nature death rate of humans/aimals 
βa1  Contact rate from infectious animals to susceptible animals
βa2  Contact rate from infectious animals to susceptible humans
βh  Contact rate from infectious humans to susceptible humans
δh  Progression rate of exposed humans to the infectious humans

dh/da  Disease-induced death rate of humans/animals
γ1  Removed rate due to human intervention or isolation

γ2/γa  Recovered rate of infectious humans/animals

 
Figure 1. A schematic diagram of the system (1)

 It can be verified by examining directions of the vector fields on the boundary of 
ℝ7

+ that solutions to system (1) with non-negative initial conditions remain non-negative for  
t ≥ 0 and that the system is well defined. It’s easy to verified that the limit sets of system (1) are 
contained in the bounded and positively invariant region: 
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Basic reproduction number

 System (1) has three possible equilibria in Γ: 
	–  Disease-free equilibrium P0 = (S̄ h, 0, 0, 0, S̄ a, 0, 0) = (Πh/µh, 0 , 0, 0, Πa/µa, 0, 0). 
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	–  Endemic equilibrium P* = (S* 
h, E*

h, I*
h, R*

h, S*
a, I*

a, R*
a) > 0.

	–  Boundary equilibrium P1 = (S~
h, E

~
h, I

~
h, R

~
h, S

~
a, 0, 0). 

Using the next generation matrix method [11], we define the basic reproduction num-
ber of the system (1) as R0 = max{Rh, Ra}, where:
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are the basic reproduction numbers of the single human and animal population, respectively. 
We have observed that the removed rate γ1 of early-exposed populations impact the basic re-
production number Rh. Therefore, isolating or treating a larger proportion of early-exposed 
individuals is advantageous for disease control.

The existence and uniqueness of equilibrium

The disease-free equilibrium P0 is always exist. If Ra > 1, µ2
h > βa2dh, we can let the 
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Then we can conclude that the endemic equilibrium P* is the only equilibrium of (1) 
in the interior of Γ.

Similar to the previous proof, we will prove the uniqueness of the boundary equilibri-
um P1. If Rh > 1, we have that βh – n > 0, then:
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The boundary equilibrium P1 is the only equilibrium of (1) in the boundary of Γ. 
Theorem 1. (1) If R0 < 1, then the disease-free equilibrium P0 is locally asymptotically 

stable in Γ; if R0 > 1, then the disease-free equilibrium P0 is unstable. (2) If Rh > 1, Ra < 1, the 
boundary equilibrium P1 is locally asymptotically stable. 

 The proof is provided in the Appendix A.
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Theorem 2. If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically 
stable in Γ. If R0 > 1 then the disease-free equilibrium P0 is unstable. 

 Proof. We choose the Lyapunov function: 
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We can get that L ⋅ < 0 if R0 ≤ 1. Furthermore, L ⋅ = 0 ⇔ Eh = Ih = Rh = Ia = Ra = 0 and  
Sh = S̄ h, Sa = S̄ a. Therefore, the largest invariant set in the closure Γ̄  of Γ where L ⋅  = 0 is the 
singleton {P0}. By LaSalle’s Invariance Principle, P0 is globally asymptotically stable in Γ, 
completing the proof. 

Stochastic model

In this section, to account for the impact of stochastic factors in the transmission of 
Mpox, we extended the deterministic system and developed a stochastic perturbation system:
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where Bi(t) are mutually independent standard Brownian motions and σ2
i > 0, (i = 1,..., 7) denote 

the intensities of the white noise. We also assume that the Brownian motion may fulfil the basic 
postulates of Bi(0) = 0. Some basic theory in the following text can be found in [12], and are 
omitted here for brevity. 

Existence and uniqueness of the positive solution

 It can be verified that for any initial value 
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of stochastic system (6) on t ≥ 0 and the solution will maintain in R7
+ with probability one. The 

method can used by [13].
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Extinction of disease

We find the sufficient conditions for the extinction in this section. For simplicity and 
comfort in reading the next results, we define:
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Especially, if v < 0, then the diseases in Eh, Ih, and Ia go to extinction with probability 
one, i.e. 

 The proof is provided in the Appendix B.

Stationary distribution and ergodicity

 In this section, based on the theory of Has’minskii [14], we verify that there is an 
ergodic stationary distribution, which reveals that the disease will persist.

Defining a parameter: 
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Theorem 4. If Rs
0 > 1, then for any initial value

 	 [ ] 7(0), (0), (0), (0), (0), (0), (0)h h h h a a aS E I R S I R +∈R

system (6) admits a unique stationary distribution π(.) and it has the ergodic property. 
 The proof is provided in the Appendix C. 

Numerical simulations

To validate diverse analytical outcomes in our research, we employ numerical meth-
ods to investigate both deterministic and stochastic systems. Our simulations consider the 
initial conditions: Sh(0) = 120, Eh(0) = 0, Ih(0) = 0, Rh(0) = 0, Sa(0) = 150, Ia(0) = 30, and  
Ra(0) = 150. Parameter values are chosen based on those in [5, 6, 10] and summarized in tab. 2.

Table 2. Parameter values of the system (1)
Parameter  Interpretation  values 

Πh  Recruitment rate of humans  10
Πa  Recruitment rate of animals  10
µh The nature death rate of humans  0.015/0.02/0.015
µa  The nature death rate of animals  0.03/0.03/0.03
βa1  Contact rate from infectious animals to susceptible animals  0.027/0.27/0.27
βa2  Contact rate from infectious animals to susceptible humans  0.09
βh  Contact rate from infectious humans to susceptible humans  0.06/0.06/0.2
 δh  Progression rate of exposed humans to the infectious humans  0.2
dh  Disease-induced death rate of humans  0.002
da  Disease-induced death rate of animals  0.002
γ1  Removed rate due to human intervention or isolation  0.6/0.06/0.06
γ2  Recovered rate of infectious humans  0.01/0.01/0.01
γa  Recovered rate of infectious animals  0.02/0.2/0.02

In fig. 2 dynamics behaviour comparisons of [Sh(t), Eh(t), Ih(t), Rh(t), Sa(t), Ia(t), 
Ra(t)] in the deterministic and stochastic system: βh = 0.06, γ1 = 0.6, µh = 0.015, γ2 = 0.01,  
βa1 = 0.027, da = 0.002, µa = 0.03, γa = 0.02, σi = 0.2 (i = 1,...,7), R0 = 0.5453 < 1, and  
v = –0.0217 < 0 (furthermore Rs

0 = 0.0147 <1). In fig. 2, we can find that the re-
sult confirm our hypothesis that effective early intervention in this population can 
control disease transmission, resulting in the attainment of a disease-free equilibri-
um. The trend of the disease is similar to that of the deterministic system. In fig. 3,  
βh = 0.06, γ1 = 0.06, µh = 0.02, γ2 = 0.01, βa1 = 0.27, da = 0.002, µa = 0.03, γa = 0.2, σ1 = 0.2,  
σ2 = 0.85, σ3 = 0.85, σ4 = 0.2, σ5 = 0.2, σ6 = 0.85, σ7 = 0.2, R0 = 1.3393 > 1 and v = –0.0072 < 0  
(furthermore Rs

0 = 0.0032 < 1). The fig. 3(e) resulting in disease stabilization af-
ter reaching a certain threshold. However, due to the significant perturbations in-
troduced by the stochastic system, it allows for disease eradication. Thus, study-
ing stochastic systems is essential for the same infectious disease. From fig. 4,  
βh = 0.2, γ1 = 0.06, µh = 0.015, γ2 = 0.01, βa1 = 0.27, da = 0.002, µa = 0.03, γa = 0.02, σ1 = 0.2,  
(i = 1,..., 7). The R0 = 5.3872 >  1 and   Rs

0 = 1.3910 > 1 (furthermore v = 0.5742 > 0,)  
R s

0 = 0.0032 < 1), fig. 4(f), we known that in the stochastic system, when the conditions for 
disease persistence are met, indicating that the disease will continue to exist.
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Figure 2. Dynamics behaviour 
comparisons of [Sh(t), Eh(t), Ih(t), Rh(t), 
Sa(t), Ia(t), Ra(t)] in the deterministic and 
stochastic systems, βh = 0.06, γ1 = 0.6,  
µh = 0.015, γ2 = 0.01, βa1 = 0.027, da = 0.002,  
µa = 0.03, γa = 0.02, σi = 0.2 (i = 1,...,7),  
R0 = 0.5453 < 1 and v = –0.0217 < 0  
(furthermore R s

0 = 0.0147 < 1)
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Figure 3. Deterministic and stochastic 
systems exhibit simular dynamic 
behaviors,  βh = 0.06, γ1 = 0.06, µh = 0.02,  
γ2 = 0.01, βa1 = 0.27, da = 0.002, µa = 0.03, 
γa = 0.2, σ1 = 0.2, σ2 = 0.85, σ3 = 0.85, 
σ4 = 0.2, σ5 = 0.2, σ6 = 0.85, σ7 = 0.2, 
R0 = 1.3393 > 1 and v = −0.0072 < 0 
(furthermore Rs

0 = 0.0032 < 1)
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Figure 4. Comparison of the dynamic 
behaviors of [Sh(t), Eh(t), Ih(t), Rh(t), 
Sa(t), Ia(t), Ra(t)] in the deterministic 
and stochastic systems, βh = 0.02,  
γ1 = 0.06, µh = 0.015, γ2 = 0.01,  
βa1 = 0.27, da = 0.002, µa = 0.03,  
γa = 0.02, σi = 0.2 (i = 1,...,7),  
R0 = 5.3872 > 1 and R s

0 = 1.3910 > 1  
(furthermore v = 0.5742 > 0)
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Appendix A 
The proof of Theorem 2

Proof. The proof of Part (1). The Jacobian matrix at disease-free equilibrium P0 is: 
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It  not  difficult  to  find  that  the  five  eigenvalues  which  are  –µh,  –µh,  –μa,  –µa,  and  
βa1 – (da + γa + µa) – µa = (Ra – 1)(da + γa + µa). Then we can simplify the Jacobian matrix to the 
following form J(P0)2×2 and the characteristic equation is:
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According to the Vieta’s theorem, we can infer that all the eigenvalues of the Jacobian 
matri J(P0) are negative if R0 < 1. Thus we have derived that the disease-free equilibrium P0 
is locally asymptotically stable by the Routh-Hurwitz condition. If R0 > 1, then there exists 
un-negative eigenvalue, thus P0 is unstable.

The proof of Part (2). It is known that when Ra < 1, the disease will die out in the ani-
mal population. Therefore, we only consider the spread of the disease in the human population. 
Let µdt =dτ, we obtain the following system:
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µ

+ + + +

 

 

 

 
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Similar to the proof of the Part (1), the characteristic equation of J(P1) is: 
3 2

1 2 3( 1)( ) = 0A A Aλ λ λ λ+ + + + (12)
where

	

1 1 2 2 1 2

3 2 2 1

= 1 > 0, = ( ) 1 > 0

= (1 ) (1 ) > 0

h h h h

h h

h h h h h
h h h

h h

I I
A A

N N

I E I R
A d

N N

β β
ω ω ω ω

β
δ γ ω γ δ

 
+ + + + + 

 
 + +

+ + + + 
 

  

 

    

 

 

 

and we can conclude that A1A2 – A3 > 0. The Routh-Hurwitz conditions are satisfied. Thus we 
have derived that the boundary equilibrium P1 , which exists if Rh > 1, Ra < 1, is always locally 
asymptotically stable. 

Appendix B

The proof of Theorem 3

Proof. Define C2-function V: ℝ7
+ → ℝ: V(Eh, Ih, Ia) = Eh + kIh + Ia 

where

	

1= h h

h
k

δ γ µ
δ

+ +

Since the contact rate between animals and humans is much smaller than the contact 
rate between people (βa2 < βh) , in other words, there is a constant 0 < ϵ ≤ 1 that makes 

	
2 =

a a h h h h

a h

I S I S
N N

β β


As we have stated in the previous process, applying Itô’s formula to lnV then we have:

[ ]2 2 3 3 4 4
1d(ln ) = (ln )d d ( ) d ( ) d ( )V L V t B t B t B t
V

σ σ σ+ + + (13)

where

( ) ( )2

2 2 2 2 2 2 2
2 3 6

2

1(ln ) ( ) 2 1 ( ) 1

2

h h h h a a a a a

h h a

L V k d I d I
V

E k I I
V

γ µ γ µ

σ σ σ

 ≤ + + − + + + − − 

+ +
−

R R

(14)

Obviously, we can find that 

	
( )2 2 2 2 2 2 2 2

2 3 62 2 2
2 3 6

1 1 11, 1, andh a
h h a

I I
V E k I I

V V
σ σ σ

σ σ σ

 
≤ ≤ ≤ + + + +  

 

Then we can infer that:

( ) [ ]1 2 3 2 2 3 3 4 4
1d(ln ) d d ( ) d ( ) d ( )V H f H H t B t B t B t
V

σ σ σ≤ + − + + + (15)

Integrating (13) from 0 to t and then dividing by t on both sides, we have:
31 2

1 2 3
( )( ) ( )ln ( ) ln (0) M tM t M tV t V H f H H

t t t t t
− ≤ + − + + + (16)
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where 

	

2 3 6
1 2 2 3 3 6

0 0 0

( ) ( ) ( )
( ) = d ( ), ( ) = d ( ), ( ) = d ( )

( ) ( ) ( )

t t t
h h aE s kI s I s

M t B s M t B s M t B s
V s V s V s

σ σ σ
∫ ∫ ∫

Taking the superior limit on both sides of eq. (16), we have:

 	
ln ( )sup . .limt

V t v a s
t→+∞ ≤

Again we know that the simple meaning of the above equation implies that:

	
( ) = 0, ( ) = 0, ( ) = 0 . .lim lim limh h a

t t t
E t I t I t a s

→+∞ →+∞ →+∞

We can say that when v is negative, the diseases die out with probability one. 

Appendix C

The proof of Theorem 4

Based on the theory of Has’minskii [14], we assume X(t) be a regular time-homoge-
nous Markov process in Ed as described:

	
d ( ) = ( )d d ( )

k

r r
r

X t b X t B tσ+ ∑
The diffusion matrix is defined

	 1

( ) = [ ( )], ( ) = ( ) ( )
k

i j
ij ij r r

r

A X a x a x x xσ σ
=

∑
Proof. Similar to the lemma used in [8], we can give the diffusion matrix of the system 

(6). 

	

2 2
1

2 2
2

2 2
3

2 2
4

2 2
5

2 2
6

2 2
7

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0=
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

h

h

h

h

a

a

a

S

E

I

RB
S

I

R

σ

σ

σ

σ

σ

σ

σ

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Choosing

 	 { }2 2 2 2 2 2 2 2 2 2 2 2 2 27( , , , , , , ) 1 2 3 4 5 6 7= , , , , , ,min S E I R S I R D h h h h a a ah h h h a a a
M S E I R S I R

σ
σ σ σ σ σ σ σ∈ ⊂ +R

we can get that 

	

7
2

, 1

( , , , , , , )ij h h h h a a a i j
i j

a S E I R S I R Mξ ξ ξ
=

≥∑
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for any

	
7

1 7( , , , , , , ) , = ( , , )h h h h a a aS E I R S I R Dσ ξ ξ ξ +∈ ∈ R

where

	

1 1 1 1 1 1 1= , , , , , , ,D k k k k k k k
k k k k k k kσ

             × × × × × ×             
             

and k > 1 is a sufficiently large integer.
Next, we construct C2-function V1, V2, and V3: ℝ7

+ → ℝ such as:
1 1 2 3 4 5

2 6 1

3 2 2

= ln ln ln ln ln
= ln ln ln ln ln ln

= ( , , , , , , ) [ (0), (0), (0), (0), (0), (0), (0)]

h h h h a a a h h h a a

h h h a a a h h h h a a a

h h h h a a a h h h h a a a

V S E I R S I R c S c E c I c S c I
V c V S E R S I R S E I R S I R

V V S E I R S I R V S E I R S I R

+ + + + + + − − − − −

− − − − − − + + + + + + +

−
(17)

where c1-c6 are some positive constants. Making use of Ito's formula, we have: 
1/7

51 2 3 4 1 2
1 1

2
5

1 2 1 3 2 4

2 22 2
3 3 61 1 1 2 2

4 5

( ) 7

( ) ( )
2

2 2 2 2

a a a ah h h h h h a h h
h h a a

h h h h a a a h

h a h h h h h a

a a
a a a

a

c S Ic c I S c E c I
L V N N c

S N E I S N N N

c c c d c

I cc cc c d
N

β ββ δ β
µ µ

σ
µ δ γ µ γ µ µ

β σ σσ σ
γ µ

   Π Π
   ≤ − + + +
   
   

 
+ Π + Π + + + + + + + + + +  

 


+ + + + + + + +



 


(18)

Moreover, we assume that:

1 2 32 2 2
1 2 3

1 2

4 52 2
5 6

2( )
= , = , =

2 2 2

= , =

2 2

h a h a h a

h h h h h

h a h a

a a a a

c c c
d

c c
d

σ σ σµ δ γ µ γ µ

σ σ
µ γ µ

Π + Π Π + Π Π + Π

+ + + + + + +

Π + Π Π + Π

+ + + +

Consequently, using the parameter Rs
0 in eq. (18) which take the form:

1/7 2 1
1 0 1 4( ) 7( ) ( ) 1

a a a as h h
h a

a h a

I II
L V c c

N N N

β ββ 
   ≤ − Π + Π − + + +   

 
R (19)

The application of the Ito's  formula and the use of the system (6) we get:

( ) ( )

( )

3 6 1
1/2

2 1 2
1 6 4 6

2 2 2 2 2 21 2 1
1 2 4 5 6 7

3 3

1 1 2

1
2

h a h h a a a h h a a a a

a a a a a a hh h h h h h

a h a a h h

a ah h h a a a

h h h a a a

LV c d d I N d I

I I I SI S I
c c c c

N N N N E E

SE I I
R R S S N R

κ µ γ δ µ γ µ

β β ββ µ β

βγ γ γ
σ σ σ σ σ σ

≤ − + Π + Π + + + + + + − − − +

   
 + + + + + − − −     

Π Π
− − − − − − + + + + + +

(20)

where

	
1/7

0= 7( ) ( ) 1 > 0s
h aκ  Π + Π − R



Liu, G., et al.: Dynamical Analysis of a Class of Monkeypox Epidemic Model 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 4B, pp. 3367-3383	 3381

Then we define a set is given:

1 2 3 4 5 6 7
1 2 3 4 5 6 7

1 1 1 1 1 1 1= , , , , , ,h h h h a a aD S E I R S I R
 

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 
 
      

      

where ϵi > 0 (i = 1,...,7) are sufficiently small constants. Let
 	 ˆ = ( , , , , , , )h h h h a a aS E I R S I Rω

then we divide the domain ℝ7
+/D into the 13 categories is given:

	

{ } { }
{ } { }

{ } { }
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ˆ ˆ= ,0 < < ,0 < < , , = ,0 < < ,
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ω ω

ω ω
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+ +
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∈ ∈ ≥

∈ ≥ ∈ ≥
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 
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h
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D R

D S D I D R

ω

ω ω ω

+

+ + +

  
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  
     

∈ ∈ ∈     
     

R

R R R


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Next, we will show that:
 	 3 ( , , , , , , ) < 0h h h h a a aLV S E I R S I R
on ℝ7

+, which is equivalent to proving it on the above 13 domains.
Case 1. If (Sh, Eh, Ih, Rh, Sa, Ia, Ra) ∈ D1 by eq. (20), 

( )

3 1 6 4 6 12 1

2 2 2 2 2 2
1 2 4 5 6 7

1 6 4 6 12 1

2 2 2 2 2 2
1 2 4 5 6 7

1

( 1)( ) ( 1) 3( )

1 ( )
2

( 1)( ) ( 1) 3( )

1
2

h a a h a h a

h
h a a

h

h a a h a h a

h
h a a

LV c c c c

d
S

c c c c

d

β β β µ µ γ

δ γ σ σ σ σ σ σ

β β β µ µ γ

δ γ σ σ σ σ σ σ

≤ Π + Π + + + + + + + + +

Π
+ + + + + + + + + − ≤

≤ Π + Π + + + + + + + + +

Π
+ + + + + + + + + −



(21)

let ϵ1 > 0 and sufficiently small, so LV ≤ 0 for any (Sh, Eh, Ih, Rh, Sa, Ia, Ra) ∈ D1.
Cases 2-13 share a similar methodology with Case 1 . All of them can lead to similar 

conclusions, and are omitted here for brevity. In conclusion, from all cases it could be noted that 
for a sufficiently small, ϵi, there are:

 	

7

3 ( , , , , , , ) < 0 for all  ( , , , , , , )h h h h a a a h h h h a a aLV S E I R S I R S E I R S I R
D

+∈
R

According to [14], we can obtain that system (6) is ergodic and has a unique stationary 
distribution. This completes the proof. 

Conclusions

This research aimed to investigate monkeypox (Mpox) transmission dynamics be-
tween human and animal populations through mathematical modeling. Firstly, we refined a de-
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terministic Mpox model (1) by incorporating early-exposed populations, analyzed the existence 
of solutions, identified three equilibrium points P0, P*, P1, and derived the basic reproduction 
number R0 = max{Rh, Ra}. Obviously, our study high lights the key role of R0, which suggests 
that the disease-free equilibrium is globally asymptotically stable when R0 ≤ 1. Furthermore, 
we developed a stochastic model (6), which considers the impact of random factors, and pro-
vided conditions for disease eradication and persistence. We conducted numerical simulations 
to compare both the deterministic and stochastic models, and the results indicated that, under 
significant perturbations, the stochastic model (6) demonstrated the potential for disease extinc-
tion, whereas the deter ministic model (1) did not exhibit such a trend. This finding underscores 
the importance of early detection and intervention strategies, as they may be crucial in mitigat-
ing the impact of random factors and preventing disease outbreaks.

Nonetheless, our study is limited in that it primarily focuses on the stability of the dis-
ease-free equi librium, neglecting the analysis of endemic stability. Additionally, we relied on 
parameter settings from previous studies for the numerical simulations. It is crucial to acknowl-
edge these limitations when interpret ing and applying the findings of our research
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Nomenclature
da 	 – disease-induced death rate of animals
dh 	 – disease-induced death rate of humans
Eh 	– population of exposed in the early  

stages humans
Ia 	 – population of infected animals
Ih 	 – population of infected humans
Na 	– total population of animals
Nh 	– total population of humans
Ra 	– population of removed animals
Rh 	– population of removed humans
Sa 	 – population of susceptible animals
Sh 	 – population of susceptible humans

Greek symbols

βa1 	– contact rate from infectious animals  

to susceptible animals
βa2 	– contact rate from infectious animals  

to susceptible humans
βh 	 – contact rate from infectious humans  

to susceptible humans
γa 	 – recovered rate of infectious animals
γ1 	 – removed rate due to human  

intervention or isolation
γ2 	 – recovered rate of infectious humans
δh 	 – progression rate of exposed humans  

to the infectious humans
µa 	 – nature death rate of aimals
µh 	– nature death rate of humans
Πa 	– recruitment rate of animals
Πh 	– recruitment rate of humans
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