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Abstract: In order to reveal the mechanism of the abnormal movement (Brownian motion enhances 

thermal scattering) of nanoparticles on the fluid enhanced heat transfer, the two-phase model was 

used to study the abnormal convection and diffusion of viscous nanofluids in the flat boundary layer 

of porous medium. Firstly, for the two-dimensional steady boundary layer stagnation point flow of 

incompressible Newtonian-nanofluids, the nonlinear governing equations of the flow field and 

temperature field of nanofluids are established from the Oberbeck-Boussinesq approximate 

equations. Secondly, the modern Lie group analysis method is introduced, we give the Lie symmetry 

determining equation of the flow field partial differential equations and the characteristics of the 

solutions. Further, using the relationship between the Lie symmetries and the conserved quantities, 

the conservation vector form of the flow field and the group invariant solution are derived in detail, 

and the reduced order model of the nanofluid flat boundary layer is obtained. Finally, the correctness 

of the analytical results obtained by the Lie group method was verified for different values of the flow 

parameter Prandtl. Research has shown that the Lie group method can be used to analytically solve 

the velocity and temperature distribution functions of abnormal motion of nanoparticles. The fluid 

temperature increases with the increase of the volume fraction parameter of nanoparticles, but 

decreases with the increase of the Prandtl value of the base fluid, and decreases with the increase of 

the plate stretching speed. The Lie group analysis method in this paper provides reference value for  

numerical simulation solutions of various heat and mass transfer in nanofluids. 

Key words: Nanofluids; Plate Boundary layer; Lie group analysis; Conservative vector; Invariant 

solution 

 

1. Introduction 

Nanofluids [1-2] are colloidal suspensions containing nanoscale particles in liquids, which can 

significantly improve thermal conductivity compared to pure base liquids. The physical properties of 

nanofluids are highly anomalous due to the complex force interactions between nanoparticles, and 

between particles and base liquids. Numerous studies have shown [3-4] the high thermal 

conductivity of nanofluids is closely related to the anomalous diffusion motion of nanoparticles, 

which is a comprehensive result of Brownian motion of particles, agglomeration effect and surface 

layer effect of particles [5]. This is of great significance for improving the utilization efficiency of 

chemical energy. The latest technological applications for heat and mass transfer of nanoparticles is 

ultrasound regulates the movement of nanoparticles, for example, Hedeshi [6] investigated the 

simultaneous effects of using nanofluid and ultrasonic vibrations on the heat transfer enhancement 



(HTE) of a double-pipe heat exchanger (DPHX), Amin [7] investigated an innovative active method 

based on the ultrasonication technology to improve heat transfer in low thermal efficiency of indirect 

water bath heaters. It is worth noting that the mechanical models used in the above literatures for 

heat and mass transfer in nanofluids are all boundary layer equations. The mass and momentum 

exchange mechanism of nanofluids in boundary layer flow on porous extension planes is an 

important scientific topic, as their temperature and density distribution characteristics can directly 

affect some polymer forming and metallurgical processes [8]. From the perspective of mathematical 

deduction mechanism, the problem of anomalous heat transfer in nanofluids can be described by 

nonlinear Navier-Stokes dynamic equations. Therefore, finding approximate or exact solutions to the 

anomalous convection diffusion equation in the boundary layer of nanofluid flat plates is a very 

meaningful fundamental theoretical work.  

At present, domestic and foreign scholars have done a lot of work on the numerical 

simulation and experimental aspects of heat and mass transfer of nanofluids under various 

mechanical conditions. For example, Xu Xiaoqin [9] used fourth-order Runge-Kutta numerical 

calculations for the boundary layer problem of nanofluids containing rotating microorganisms. 

AOUINET Hana [10] numerically simulated the turbulent boundary layer of three different nanofluids 

on a flat plate using a CFD program. Kalpana G [11] conducted a numerical simulation study on the 

unsteady magnetohydrodynamic nanofluid boundary layer flow under the combined action of 

Brownian motion and thermophoresis. Dong Jingtao [12] experimentally measured the thermal 

conductivity data of SiO2 nanofluids with different mass concentrations and temperatures. Darvishi 

[13] used the mathematical analysis on heat equation and generating graphs for finding the 

parameters important to the heat transfer in the straight fins. Although numerical simulation can 

save time, the accuracy of numerical difference algorithms is generally limited by step size and 

introduces a certain amount of dissipation error, making it difficult to display the quantitative 

relationship between mechanical response and structural parameters globally. Although 

experimental methods are accurate and reliable, they often consume time and effort. Imagine if we 

could reduce the order or approximate analytical solution of the boundary layer equation for 

nanofluids, which would greatly facilitate the understanding of the structure and properties of the 

original system. The Lie group analysis method for differential equations was originally proposed by 

Sophius Lie in the 1950s. It has been proven that the Lie group method is a very universal and 

effective algorithm for solving exact solutions to nonlinear partial differential equations. The 

advantages of using the Lie group analysis method compared to other numerical or experimental 

approaches in studying nanofluid mechanics problems are that Lie symmetry group transformations 

can convert the boundary layer equations into non-linear ordinary differential equations. The 

coupled nonlinear PDEs are transformed to ODEs by utilizing an one parameter Lie-group analysis 

and then the Spectral Local Linearization Method (SLLM) is applied to get the numerical values for 

the surface frictionand Nusselt number along with the entropy and Bejan number profiles, which 

makes this problem meaningful for the research in fluid dynamics. Therefore, applying the Lie group 

algorithm to the anomalous diffusion heat transfer in the boundary layer of nanofluid flat plates has 

feasibility and certain advantages. 

The use of Lie group analysis method to study nanofluid mechanics problems has achieved 



some research results. For example, in reference [14], a single parameter Lie group was applied to 

solve the problem of the influence of magnetic field on free convection of nanofluids on semi infinite 

flat plates, and a similar reduction was given; Reference [15] used Lie group transformation to study 

the temperature dependent fluid viscosity and the effect of thermal particle deposition on free heat 

and mass transfer under different flow conditions; Reference [16] used the Lie group analysis method 

to obtain the conservation law of the flow equation and the variation law of velocity and 

temperature fields for the boundary layer problem of fractional viscoelastic fluids; Reference [17] 

used Lie group variation to study the natural convection of MHD in nanofluids flowing through a 

thermally stratified linear porous extension plane, and obtained the key factors affecting the high 

thermal conductivity of nanofluids. The research and application of modern mathematical tools such 

as Lie groups not only enable creative solutions to complex and profound problems in fluid dynamics, 

but also promote the further development of Lie group theory. Overall, the Lie group analysis 

method currently used in the study of heat and mass transfer in nanofluids is not systematic and 

relatively scattered, and there is no standardized program process. Moreover, there is very little 

research specifically focused on the problem of anomalous convection and diffusion in the boundary 

layer of nanofluid flat plates. The purpose of this article is to provide a general algorithm for Lie 

group analysis in nanofluid dynamics, which involves transforming and deducing the Lie symmetry 

generating element solution characteristics, conservation vector expression forms, group invariant 

solution construction, and the influence of different nanofluid parameters on flow and heat transfer 

characteristics when nanofluid flows through an extended surface. 

 The novelty of the work: (1) From a physical perspective, boundary layer equations are 

particularly interesting as they allow for a large number of invariant solutions, namely basic analytical 

solutions. by using Lie symmetry group transformation, the partial differential control equations for 

mass, momentum, thermal energy, and particle concentration conservation in nanofluid mechanics 

are transformed into ordinary differential equations, this method helps in reducing the challenges 

encountered while solving equations due to the PDE's nonlinear nature. (2) The control equations of  

nanofluid boundary layer comprehensively considers the effects of Brown motion and thermal 

swimming. It is found that the volume fraction of nanoparticles is a key parameter for studying the 

effects of nanoparticle flow field and temperature distributionthe nanofluid boundary layer. It can 

also be seen that numerical solutions can only exist when the boundary and initial conditions meet 

certain conditions, however, the Lie group analysis method is a unique and rigorous mathematical 

method for finding all symmetries and similarity solutions for boundary layer flow field of nanofluid, 

without the need for special assumptions. 

 

2. Convection diffusion of nanofluid 

Considering the incompressible Newtonian viscous fluid, the steady two-dimensional laminar 

flow is carried out on the plane 0y . The flow is limited 0y , it is shown in Figure. 1.  



 

Fig. 1  convection diffusion model of plate boundary layer for nanofluid  

 

Two forces of equal magnitude and opposite directions are applied along the x-axis to make 

the wall extend while keeping the position of the origin unchanged [18], the stretching or shrinking 

speed of plate is a , the temperature is constant wT and the volume fraction of nanoparticles is w on 

the wall of plate; The fluid temperature below the plate is the same as that of the wall;  When y

tends to infinity, the temperature is constant T and the volume fraction of nanoparticles is  , and 

the outflow velocity of boundary layer h is 0. Furthermore, it is assumed that the conventional fluid 

and the suspended nanoparticles are in thermal equilibrium, and there is no thermal expansion and 

relative sliding between them. If the heat source and fluid viscosity dissipation are not considered, 

the control equations of nanofluid satisfy the above conditions is obtained by boundary layer theory: 
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Here, the first to fourth equations in Equation 1 represent the conservation of mass, momentum, 

thermal energy, and nanoparticles volume respectively. yx, are the coordinates of plane, vh, are the 

velocity components in yx, direction,T is the local temperature of fluid, is the volume fraction of 

nanoparticles, nf is its effective density, nf is its effective dynamic viscosity, nfpc )( is its effective 



heat capacity, nf is its effective thermal diffusivity, BD is the diffusion coefficient of brown motion 

(the proportionality coefficient of the mean square displacement of the particle motion with respect to 

time), TD is the diffusion coefficient of thermophoresis (the proportional coefficient of the 

thermophoresis velocity to temperature gradient). For the above parameters, please refer to reference 

[19]: 
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Here sf , mean the base fluid and nanoparticles, nfk is the effective heat exchange rate, pc, are the 

reference standard density and specific heat capacity, BK is Boltzman constant, R is the radius of 

nanoparticles, is liquid viscosity. 

      The boundary conditions are as follows: 
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      Setting the stream function is xvyhyx  /,/),,(  , so the dynamic boundary 

layer equations of flow field and temperature field are as follows: 
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3. Lie symmetries of the plate boundary layer equation for nanofluid  

The independent variable is ),( yxx , the dependent variable is ),( Tu , the total 

differential operator, first and second order partial derivatives are: 
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The infinitesimal transformation group with a single parameter: 
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Here, is a infinitesimal parameter, ii  , are infinitesimal generator functions. 

According to the extension theory of Lie group, the first , second and third order extension vector 

fields of (6) are: 
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Here
)(i is i -order infinitesimal generator function. 

     The invariance of equation (4) under the transformation (6) can be expressed as: 
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The (8) is expanded to solve the high-order linear partial differential equations of 2121 ,,,  , and 

the coefficient expression is: 
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Here, g is an arbitrary function, 51 ~ cc are arbitrary constants, fff  / is dynamic viscosity 

coefficient of base fluid. All generators X of equation (8) are constructed the commutator operation



][ ( Lie bracket) in partial differential operator space, the basement of the corresponding 

four-dimensional Lie algebra structure is: 
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The Lie algebra represents the tangent space near the unit element of a Lie group, which is a linear 

vector space. The 321 ,, XXX in Equation 10 are independent of each other. The 1X corresponds to 

scaling group of transformation, while the 2X and 3X are translation groups of transformation. 

 

4. Conservation law of the plate boundary layer equation for nanofluid 

For the solution )(xuu  of equation (4), if the vector
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SoC is a conservation vector of equation (4). 
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Here L is Lagrange form function. 

It is noted that the plate boundary layer equation (4) for nanofluid satisfies the self-adjoint 
condition, so the Lagrange form function of flow field can be taken as: 
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Here 06 c is a constant. 

  By substituting the infinitesimal Lie symmetry generator in (10) and (13) into the formula (12), 

can obtain two sets of conservative vectors (nontrivial) of equation (4): 
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      According to the conservation law of Newtonian fluid wall jet in reference [21], the nanofluid 
principle includes mass conservation, momentum conservation, thermal energy conservation and 
nanoparticle conservation. The first set in (14) is the momentum conservation equation, so the 
physical meaning is momentum density conservation, and the conserved quantity of the second set 
in (14) does not conform to any one of the control equations, it is only a mathematical expression. 
 

5. Invariant solutions of the plate boundary layer equation for nanofluid 

In order to obtain new exact solutions from the existing solutions of equations, need group 

invariant  solut ion of equations .  If the )(xu J is  a  invariant  solut ion of PDEs: 
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 ),(),( uxux  of PDEs, if and only if 0)( JX are established. 

The group invariant solution combined with the separation of variables can reduce the number of 

independent variables, and then it can be transformed into ODE, which provides a way to get the exact 

solution of PDE [22]. 

     Taking a special infinitesimal generator, its invariant solution is: 
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The corresponding characteristic equation is: 
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Substituting (17) into (4), have: 
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isreference standard viscosity. 

      Then the invariant solution of velocity field equation is: 
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The temperature field equation is a second order ordinary differential equation with variable 

coefficients, which can be expressed by the Kummer function kM , and can also be solved iteratively 

by numerical difference algorithm. The results show that the volume fraction of nanoparticles is a key 

parameter to study the effect of flow field and temperature distribution of nanofluid. 

The local wall friction coefficient fC and local Nusselt number xNu have important 

applications in practical problems, which are: 
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Here fx Hx /Re  is the local Reyonlds number. 

      Now, selecting Cu nanoparticles in numerical calculations in this paper. The values of density, 

size, heat conductivity, and heat capacity of the nanoparticles can be obtained by looking up table 1: 

 

Table 1 Thermophysical properties of fluid and nanoparticles 

Nanoparticles is 

Copper( Cu), 

Fluid is water 

 Density Size 
Heat 

conductivity 

Heat 

capacity  

Particle 

volume 

fraction 
BD  TD  

8933 

(kg/m3) 20nm 401(W/m*K) 
385 

(J/kg*K) 
0.05 

2*10^-18 

(m2 /s) 

1.67*10^5 

(/K) 

 

In order to illustrate the correctness, the control parameters are taken to satisfy the boundary 

conditions. The comparison with the available solutions in reference is shown in Table 2. The 

comparison results show there is a good consistency for each Pr value. Therefore, the results of this 

paper are very accurate. 

 

 

 



Table 2  Comparisonof results for Nusselt )0( with the reference [23] 

Pr  The paper 

)0(  

The reference[23] 

)0(  

0.72 0.80867991 0.8086 

1.00 1.00000000 1.0000 
3.00 1.92368891 1.9237 

7.00 3.72077927 3.7207 

 

When the parameters meet the boundary conditions, the step size 1.0 is taken, and the 

fourth-order Runge-Kutta algorithm is used to solve the ordinary differential equation (18). The 

temperature field curves under different Pr are given in Figure 2(a), and the results of 

Mukhopadhyay and layek [24] are given in Figure 2(b), we have found that they agree well. It can be 

seen that the fluid temperature decreases with the increase of the Pr value, which is caused by the 

thinning of thermal boundary layer. This characteristic shows that the smaller Pr of fluids is more 

sensitive to thermal radiation. 

 

       Fig. 2(a) The results of this paper                Fig. 2(b) The results of reference [24] 

 

Figure 2. The temperature field curves under different Pr values  

6. Conclusion 

The Lie group analysis method is a type of analytical and deductive algorithm that starts from 

the dynamic differential equation itself. Its core is that the invariance of the differential equation 

under group transformation can construct the first integral and group invariant solution of the 

original equation, which provides a good idea for the reduction, reduction, and exact general solution 

of the original equation. The difficulty of this algorithm lies in the effective solution of Lie symmetric 



generator functions. In response to the problem of anomalous convection and diffusion in the 

boundary layer of viscous nanofluids in porous media, this paper uses modern Lie group method to 

solve the Lie symmetry, conservation vector, and group invariant solution of the nanofluid boundary 

layer equation system. The reduced order model of the original partial differential equation system is 

obtained, and the heat transfer index characteristics in the boundary layer of the nanofluid plate are 

analytically calculated using the reduced order model. 

The research conclusions mainly include: (1) The Lie symmetric generator vector allowed by 

the anomalous convection diffusion equation system of the nanofluid flat plate boundary layer is a 

four-dimensional partial differential operator, and its Lie algebraic space has a three-dimensional 

structure; (2) There exists a conservation vector in the anomalous convection diffusion equation 

system of the nanofluid plate boundary layer, which reflects the conservation of momentum density 

of the nanofluid; (3) The Lie group invariant solution of the anomalous convection diffusion equation 

system in the boundary layer of a nanofluid flat plate can reduce the original equation to a 

third-order ordinary differential equation system for velocity field and second-order ordinary 

differential equation system for temperature field; (4) The temperature in the boundary layer of 

nanofluid flat plates decreases with increasing plate stretching speed and Prandtl. The Lie group 

method in this article can be further extended to boundary layer problems of heat and mass transfer 

in non-stationary and non Newtonian nanofluids. 
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