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The fundamental difference between quantum and traditional plasmas is the 
electron and ion composition, the former has a much higher density and ex-
tremely lower temperature, and it can be modelled by Zakharov-Kuznetsov (ZK) 
equation. In this paper, the Hirota bilinear method is used to study its solution 
properties.  
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Introduction 

Plasma [1-3] is electrically neutral, it is observed as a neutral gas on a large scale. 

When the temperature of a regular gas increases, the particles within the gas will strike each 

other with more force due to increased thermal movement, causing many electrons to be 

ejected from atoms and molecules. When the temperature reaches a certain level, all gas at-

oms become ionized, thus producing an equal amount of positive and negative charges, re-

ferred to as high ionization. With small concentrations, the plasma will keep its original be-

havior. However, when the concentration becomes large, it will experience an alteration in its 

dynamic behavior. At this time, the quantum effect in the plasma will play a significant role, 

which will change the dynamic behavior of the plasma. Quantum plasmas [4] are composed 

of electrons and ions, their density is very high, and temperature is extremely low, opposite to 

classical plasmas. Quantum plasma is widely used in different environments, including quan-

tum diodes, ultra-small semiconductor devices, solid-density plasma interaction experiments, 

etc. Physicists have been involved in researching the phenomenon of quantum plasma, which 

has consequently driven mathematicians to study the quantum plasma equations concerning 

its physical components, it can be generally modelled by the magnetohydrodynamic model [5, 

6], and it can be finally reduced to the ZK equation [7, 8].  

This paper is to solve the ZK equation analytically. There are many analytical meth-

ods for this purpose. For examples, the variational method [9-16], the homogeneous balance 

method [17], the Backlund transformation method [18-20], the variational iteration method 
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[21], the (G’/G) expansion method [22, 23], the hyperbolic function expansion method [24], 

the Hirota bilinear method [25, 26], the exp-function method [27, 28], the homotopy perturba-

tion method [29, 30], and the mixed exponential method [31], and the Darboux transformation 

method [32]. The Hirota bilinear method [25, 26] will be used in this paper to solve the ZK 

equation with variable coefficients:  

  ( ) ( ) ( ) ( ) 0t x x xxx xyyu t u t uu t u t u          (1) 

where δ(t), α(t), β(t), and ε(t) are functions about t, and u is functions about x, y, and t. Equa-

tion (1) is often used to describe the motion of water wave in (2+1)-D space and the motion of 

plasma in magnetic field. The coefficient in the equation gives a clearer representation of the 

gradual change, the lack of symmetry of borders and external force. 

When δ(t) = 1, α(t) = 1, β(t) = 1, and ε(t) = 1, eq. (1) becomes an extension of the 

standard constant coefficient ZK equation. 

Equation (1) was widely studied by various methods [33-35], however the Hirota bi-

linear method might be more suitable for this problem.  

Now we consider the constraint of α(t) = 2ε(t), β(t) = ε(t)/9, through the following 

dependent variable transformation: 

 2(ln ) 2(ln )xx xyu f f    (2) 

We can convert eq. (1) into the following bilinear equation: 

 2 2(3 2 ) 0y x y xD D D D f f     (3) 
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where f = f(x, y, t), D-operator is defined as [25, 26]: 
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      (5) 

Interaction between a breather wave and a water wave 

To solve the rich interaction solutions of the (2+1)-D variable coefficient ZK equa-

tion, we consider the following test function:  

 1 2

1 2 3 3 13cos( )f k e k e k a
  

     (6) 
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where 
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and a1, a2, a4, a5, a6, a8, a9, a10, and a12 are constants, and a3, a7, a11, – the function of time t. 

Substituting eq. (5) into eq. (4) and making the coefficient of 1e , 2e 
, 3cos( ) , 3sin( )  equal 

to zero, we can obtain a set of equations about ai(1 ≤ i ≤ 9). Solving this set of algebraic equa-

tions, we can extract the appropriate solutions of equations and evaluate the coefficients of the 

test function. 
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and a2, a4, a5, a6, a8, a10, a12, k3 are arbitrary constants. By placing the previous coefficients in-

to transformation eq. (2), the interaction solution of eq. (4) is obtained. 
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Case 2: 
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and a2, a4, a6, a8, a9, a12, k2, k3 are arbitrary constants. By placing the previous coefficients into 

transformation eq. (2), the interaction solution of eq. (4) is obtained. 

 2
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where  
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and a2, a4, a5, a6, a8, a9, a10, a12, ki (1 ≤ i ≤ 3) are arbitrary constants. The previous coefficients 

are substituted into transformation eq. (2) to obtain the interaction solution of eq. (4): 
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and a2, a5, a6, a8, a9, a10, a12, k1, k2 are arbitrary constants. Utilizing the previously listed, trans-

formation eq. (2) can be used to derive the interaction solution of eq. (4): 
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and a2, a6, a8, a9, a12, k2 are arbitrary constants. Plugging the coefficients from earlier into 

transformation eq. (2) renders the interaction solution of eq. (4): 

 5
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( , , )u x y t
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and a3, a5, a8, a10, a12, k2, k3 are arbitrary constants. By placing the previous coefficients into 

transformation eq. (2), the interaction solution of eq. (4) is obtained: 
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and a2, a6, a8, a9, a12, k2 are arbitrary constants. Incorporating the determinations of the coeffi-

cients into transformation eq. (2) provides the interaction solution to eq. (4): 
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Case 8: 
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and a2, a6, a8, a9, a12, k1, k2 are arbitrary constants. Substituting the value of the previous coef-

ficients into transformation eq. (2) gives the interaction solution of eq. (4): 
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and a2, a5, a6, a8, a9, a12 are arbitrary constants. Plugging the coefficients from earlier into 

transformation eq. (2) renders the interaction solution of eq. (4): 
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and a2, a5, a6, a8, a9, a12, k1, k3 are arbitrary constants. Inserting the previously mentioned into 

eq. (2) gives the interaction solution for eq. (4): 
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and a5, a6, a8, a9, a12, k1, k3 are arbitrary constants. The previous coefficients are substituted in-

to transformation eq. (2) to obtain the interaction solution of eq. (4): 

 11
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where 
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and a2, a4, a6, a8, a9, a12, k2, k3 are arbitrary constants. The interaction solution for eq. (4) is 

calculated by incorporating the previous coefficients into transformation eq. (2): 
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and a4, a8, a9, a10, a12, ki (1 ≤ i ≤ 3) are arbitrary constants. To acquire the interaction solution 

for eq. (4), the previous coefficients are put into transformation eq. (2): 
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and a2, a4, a6, a8, a9, a12, ki (1 ≤ i ≤ 3) are arbitrary constants. In order to figure out the interac-

tion solution for eq. (4), the previous coefficients are used in transformation eq. (2): 
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and a2, a4, a6, a8, a9, a12, k2, k3 are arbitrary constants. Inserting the previously mentioned into 

eq. (2) gives the interaction solution for eq. (4): 
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Conclusion 

In this paper, the (2+1)-D ZK equation with variable coefficients is transformed into 

a bilinear equation by Hirota bilinear method through variables u(x, y, t), and then the test 

functions are constructed, which are then substituted into the transformed bilinear equation to 

obtain the interaction solutions. This paper reveals that the Hirota bilinear method gives much 

opportunities to find abundant solutions with physical understandings. It can not only catalyse 

the growth of science and technology, but also promotes the advancement of mathematics, 
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and it can be extended to fractal/fractional ZK equation [36-39] and the thermal displacement 

prediction models [40, 41], and this paper could offer a starting point for future research into 

non-linear problems. 

Acknowledgment 

The work is supported by National Natural Science Foundation of China (Grant No. 

11561051); the Basic Science Research Fund in the Universities Directly under the Inner 

Mongolia Autonomous Region (Grant No. JY20220003). 

References 

[1] Xin, N., et al., Giant Magnetoresistance of Dirac Plasma in High-Mobility Graphene, Nature, 616 
(2023), Apr., pp. 270-274 

[2] Han, H., et al., A Sustained High-Temperature Fusion Plasma Regime Facilitated by Fast Ions, Nature, 
609 (2022), Sept., pp. 269-275 

[3] Corkum, P. M., Plasma Perspective on Strong-Field Multiphoton Ionization, Physical Review Letters, 71 
(1993), 13, pp. 1994-1997 

[4] Haas, F., A Magnetohydrodynamic Model for Quantum Plasmas, Physics of Plasmas, 12 (2005), 6, 
062117 

[5] He, J.-H., et al., Efficacy of a Modulated Viscosity-dependent Temperature/nanoparticles Concentration 
Parameter on a Non-linear Radiative Electromagneto-nanofluid Flow along an Elongated Stretching 
Sheet, Journal of Applied and Computational Mechanics, 9 (2023), 3, pp. 848-860 

[6] Fu, Y. X., et al., Electronic Temperature Characteristics of Laser-Induced Fe Plasma in Fruits, Open 
Phys., 18 (2020), 1, pp. 40-47 

[7] Seadawy, A. R., Non-linear Wave Solutions of the Three-Dimensional Zakharov-Kuznetsov-Burgers 
Equation in Dusty Plasma, Physica A, 439 (2015), Dec., pp. 124-131 

[8] Abdullah; et al., Mathematical Methods and Solitary Wave Solutions of Three-Dimensional Zakharov-
Kuznetsov-Burgers Equation in Dusty Plasma and Its Applications, Results in Physics, 7 (2017), 14, pp. 
4269-4277 

[9] Wang, K. L., et al., Physical Insight of Local Fractional Calculus and Its Application to Fractional KdV-
Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, 1950122 

[10] Wang, K. L., He, C. H., A Remark on Wang’s Fractal Variational Principle, Fractals, 27 (2019), 8, 
1950134 

[11] He, J.-H., et al., Solitary Waves Travelling Along an Unsmooth Boundary, Results in Physics, 24 (2021), 
104104 

[12] Wu, P. X., et al., Solitary Waves of the Variant Boussinesq-Burgers Equation in a Fractal-Dimensional 
Space, Fractal, 30 (2022), 3, 2250056 

[13] Wang, S. Q., A Variational Approach to Non-linear Two-Point Boundary Value Problems, Computers & 
Mathematics with Applications, 58 (2009), 11, pp. 2452-2455 

[14] Shen, Y. Y., et al., Subcarrier-Pairing-Based Resource Optimization for OFDM Wireless Powered Relay 
Transmissions with Time Switching Scheme, IEEE Transactions on Signal Processing, 65 (2016), 5, pp. 
1130-1145 

[15] Sun, J. S., Variational Principle and Solitary Wave of the Fractal Fourth-Order Non-linear Ablowitz-
Kaup-Newell-Segur Water Wave Model, Fractals, 31 (2023), 2350036 

[16] He, J.-H., On the Fractal Variational Principle for the Telegraph Equation, Fractals, 29 (2021), 1, 
2150022  

[17] Wang, M. L., et al., Application of a Homogeneous Balance Method to Exact Solutions of Non-linear 
Equations in Mathematical Physics, Phys. Lett. A, 216 (1996), June, pp. 67-75 

[18] Pu, J. C., Chen, Y., Non-local Symmetries, Backlund Transformation and Interaction Solutions for the 
Integrable Boussinesq Equation, Mode. Phys. Lett. B, 34 (2020), 26, 2050288 

[19] Zhou, T. Y., et al., Backlund Transformations, Lax Pair and Solutions of a Sharma-Tasso-Olver-Burgers 
Equation for the Non-linear Dispersive Waves, Mode. Phys. Lett. B, 35 (2021), 35, 2150421 

[20] Zhang, S. L., et al., Exact Solutions of a (3+1)-Dimensional Extended Jimbo-Miwa Equation, Mathemat-
ics in Practice and Theory, 49 (2019), 15, pp. 219-224 



Zhao, Z., et al.: Study on the Interactions Solution of Zakharov-Kuznetsov … 
2008 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 1999-2008 

 

[21] Wang, S. Q., et al., Variational Iteration Method for Solving Integro-Differential Equations, Physics let-
ters A, 367 (2007), 3, pp. 188-191 

[22] Bian, C. Q., et al., Solving Two Fifth Order Strong Non-linear Evolution Equations by Using the G/G'-
Expansion Method, Commun Non-linear Sci. Numer. Simulat., 15 (2010), 9, pp. 2337-2343 

[23] Bibi, S., et al., Exact Solutions for STO and (3+1)-Dimensional KdV-ZK Equations Using [G'/G(2)]-
Expansion Method, Results in Physics, 7 (2017), Nov., pp. 4434-4439 

[24] Tian, Y., Quasi Hyperbolic Function Expansion Method and Tanh-Function Method for Solving Vibrat-
ing String Equation and Elastic Rod Equation, J. Low Freq. Noise. V. A., 38 (2019), 3-4, pp. 1455-1465 

[25] Wang, D., et al., Solitons and Periodic Waves for a Generalized (3+1)-Dimensional Kadomtsev- 
-Petviashvili Equation in Fluid Dynamics and Plasma Physics, Commun. Theor. Phys., 72 (2020), 11, pp. 
32-38 

[26] Ma, W. X., Zhou, Y., Lump Solutions to Non-linear Partial Differential Equations via Hirota Bilinear 
Forms, Journal of Differential Equations, 264 (2018), 4, pp. 2633-2659  

[27] He, J.-H., Wu, X. H. Exp-Function Method for Non-linear Wave Equations, Chaos, Solitons & Fractals, 
30 (2006), 3, pp. 700-708 

[28] Tian, Y., Feng, G. Q., A Short Review on Approximate Analytical Methods for Non-linear Problems, 26 
(2022), 3, pp. 2607-2618 

[29] He, J.-H., Application of Homotopy Perturbation Method to Non-linear Wave Equations, Chaos, Soli-
tons & Fractals, 26 (2005), 3, pp. 695-700 

[30] He, C. H., El-Dib, Y. O., A Heuristic Review on the Homotopy Perturbation Method for Non-
Conservative Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 41 (2022), 2, 
pp. 572-603 

[31] Panigrahy, M., Dash, P. C., Soliton Solutions of a Coupled Field Using The Mixing Exponential Meth-
od, Phys. Lett. A., 261 (1999), 5, pp. 284-288 

[32] Kovalyov, I. M., Darboux Transformation with Parameter of Generalized Jacobi Matrices, J. Math. 
Phys., 222 (2017), 6, pp. 703-722 

[33] Liu, Z. T., Sirendao, E. J., Periodic Solitary-Like Wave Solutions of Variable-Coefficient Zakharov-
Kuznetsov Equation, Math. Appl., 31 (2018), 1, pp. 61-65 

[34] Gao, B., Wang, Y. X., Traveling Wave Solutions for the (2+1)-Dimensional Generalized Zakharov-
Kuznetsov Equation with Variable Coefficients, Opt. Quant. Electron., 53 (2021), 1, pp. 1-15 

[35] Awawdeh, F., et al., Symbolic Computation on Soliton Solutions for Variable-coefficient Quantum 
Zakharov-Kuznetsov Equation in Magnetized Dense Plasmas, Int. J. Nonlin. Sci. Num., 15 (2014), 1, pp. 
35-45 

[36] He, J.-H., A Tutorial Review on Fractal Spacetime and Fractional Calculus. Int. J. Theor. Phys., 53 
(2014), June, pp. 3698-718 

[37] He, J.-H., Fractal Calculus and Its Geometrical Explanation, Results. Phys., 10 (2018), Sept., pp. 272-
276 

[38] He, J.-H., et al., A Tutorial Introduction to the Two-Scale Fractal Calculus and Its Application to the 
Fractal Zhiber-Shabat Oscillator, Fractals, 29 (2021), 8, 2150268 

[39] Akram, G., et al., Efficient Techniques for Traveling Wave Solutions of Time-Fractional Zakharov-
Kuznetsov Equation, Mathematics and Computers in Simulation, 193 (2022), Mar., pp. 607-622 

[40] Kuo, P. H., et al., A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Op-
timized Branch Structured Bidirectional GRU Neural Network, IEEE Sensors Journal, 23 (2023), 12, 
pp. 12574-12586 

[41] Kuo, P. H., et al., Thermal Displacement Prediction Model with a Structural Optimized Transfer Learn-
ing Technique, Case Studies in Thermal Engineering, 49 (2023), 103323  

 

 

 

Paper submitted: March 18, 2023 © 2024 Society of Thermal Engineers of Serbia.  
Paper revised: July 26, 2023 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: July 28, 2023 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.  

https://www.sciencedirect.com/science/journal/22113797
https://www.sciencedirect.com/science/journal/22113797/10/supp/C
http://www.vin.bg.ac.rs/index.php/en/

