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The fundamental difference between quantum and traditional plasmas is the
electron and ion composition, the former has a much higher density and ex-
tremely lower temperature, and it can be modelled by Zakharov-Kuznetsov (ZK)
equation. In this paper, the Hirota bilinear method is used to study its solution
properties.
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Introduction

Plasma [1-3] is electrically neutral, it is observed as a neutral gas on a large scale.
When the temperature of a regular gas increases, the particles within the gas will strike each
other with more force due to increased thermal movement, causing many electrons to be
ejected from atoms and molecules. When the temperature reaches a certain level, all gas at-
oms become ionized, thus producing an equal amount of positive and negative charges, re-
ferred to as high ionization. With small concentrations, the plasma will keep its original be-
havior. However, when the concentration becomes large, it will experience an alteration in its
dynamic behavior. At this time, the quantum effect in the plasma will play a significant role,
which will change the dynamic behavior of the plasma. Quantum plasmas [4] are composed
of electrons and ions, their density is very high, and temperature is extremely low, opposite to
classical plasmas. Quantum plasma is widely used in different environments, including quan-
tum diodes, ultra-small semiconductor devices, solid-density plasma interaction experiments,
etc. Physicists have been involved in researching the phenomenon of quantum plasma, which
has consequently driven mathematicians to study the quantum plasma equations concerning
its physical components, it can be generally modelled by the magnetohydrodynamic model [5,
6], and it can be finally reduced to the ZK equation [7, 8].

This paper is to solve the ZK equation analytically. There are many analytical meth-
ods for this purpose. For examples, the variational method [9-16], the homogeneous balance
method [17], the Backlund transformation method [18-20], the variational iteration method
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[21], the (G’/G) expansion method [22, 23], the hyperbolic function expansion method [24],
the Hirota bilinear method [25, 26], the exp-function method [27, 28], the homotopy perturba-
tion method [29, 30], and the mixed exponential method [31], and the Darboux transformation
method [32]. The Hirota bilinear method [25, 26] will be used in this paper to solve the ZK
equation with variable coefficients:

Uy + (U, + a(t)uuy + B)uy, + Uy, =0 @

where 4(t), a(t), A(t), and &(t) are functions about t, and u is functions about x, y, and t. Equa-
tion (1) is often used to describe the motion of water wave in (2+1)-D space and the motion of
plasma in magnetic field. The coefficient in the equation gives a clearer representation of the
gradual change, the lack of symmetry of borders and external force.

When 4(t) = 1, a(t) = 1, A(t) = 1, and &(t) = 1, eq. (1) becomes an extension of the
standard constant coefficient ZK equation.

Equation (1) was widely studied by various methods [33-35], however the Hirota bi-
linear method might be more suitable for this problem.

Now we consider the constraint of a(t) = 2¢(t), A(t) = &(t)/9, through the following
dependent variable transformation:

u=2(Inf),, +2(In f),, )
We can convert eg. (1) into the following bilinear equation:
(3D] + DD, —2D7)f - f =0 (3)

[D,D; + D, D, +5(t)D,D, +% Dy +?D§Dy +&(t)DID] +£(t)DyD, 1 - f =0 (4)

That is:
3f, f—3f7+f f—ff —2f,f+2fZ=0

e(t
fyt —ff, +ff,—1 fy +5(t)(ffxy - f, fy)+¥(f)§( - f, fXXy + fiy fxy)—

—%(foxxﬁﬁf + gy — Fog f

XXXX XXXy XXX y) +

+e(t) (g + 212 —2F, f + o, —

2 fy = 3Fy fy + o Fyy +3% Ty = T Fy) =0

where f = f(x, y, t), D-operator is defined as [25, 26]:
m n k
DJ" D Df ff’ =(i_a_] o 0 (ﬁ_a_j
ox ox oy oy ot ot (5)
P0Gy DT Y Oy ey

Interaction between a breather wave and a water wave

To solve the rich interaction solutions of the (2+1)-D variable coefficient ZK equa-
tion, we consider the following test function:
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where

G=aX+ay+agt)+a,

& =agX+agy+a,(t)+ag

Ss=agX+aygy +ay(t)+ap

and as, az, as, as, as, as, a9, A10, and ai» are constants, and as, az, ai1, — the function of time t.
Substituting eq. (5) into eq. (4) and making the coefficient of e, e ,€08(&3) ,sin(&;) equal
to zero, we can obtain a set of equations about ai(1 <i <9). Solving this set of algebraic equa-
tions, we can extract the appropriate solutions of equations and evaluate the coefficients of the

test function.
Case 1:

9s(t)%ay, (t) —18s(t)?ay, (t) +104a &(t)* —376ad(t)° + 432a7,5(t) —
—224a3 £(t) + 64a,
18ay,[&(t) —1]e(t)?

S(t)=—

t
2a,4[e(s) -1
et)=et), a=0 a(t)=2as3(t), a,(t)=2a;(t), a= J‘_%ds
a
a(t)=a;(t), a3=0, k=0 k,=0
and ay, as, as, as, as, aio, a1z, ks are arbitrary constants. By placing the previous coefficients in-
to transformation eq. (2), the interaction solution of eq. (4) is obtained.

oyt =4 7
u(x, y,t) Z, (7
where
_2ahxyle®-1

= 2ak[&(t) —1](—4sin2 {alo [ﬁ —2X+ y} +ay, (1) + alz}sec2 { O
&

e(t)

+ag; (1) + ay, }[e(t) -1 + 2tan® {alo {% —2X+ y} +ay (t) + alz}g(t) —3¢(t) + 4}

G = 5(t)2

Case 2:

2
5(t)=%, £t)=0, a,=0, at)=a,(t), a; =0, a,(t)=0, a,=0

and a, as, as, as, ag, a12, ko, ks are arbitrary constants. By placing the previous coefficients into
transformation eq. (2), the interaction solution of eq. (4) is obtained.

Uy (X, y,t) = ? ®)
2
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where
o = 2agkge™/ ™ {ag[k, COS(agX +ay,) +€%7 ™ [k +agk, sin(agx +ay,)}

& =[kee™ ™™ cos(agx+ay,) + kI
Case 3:

St)=0, &(t)=2, a =0, ay(t)=4agant, a;=0, a,(t)=—4aza,t
1
ay (t) = g &0 (1825 —19ag)t
and ay, as, as, as, as, g, a0, a1z, ki (1 < i< 3) are arbitrary constants. The previous coefficients

are substituted into transformation eq. (2) to obtain the interaction solution of eq. (4):

Uy (X, Y, 1) =’£—: ©)

where

: 19at .
X3 = 285340k K5 SIN {alo (—2a§t +X-y)+ Tlo _ alz}eae(‘lamtw%ag

2
19aht 2 2
L= {k3eaﬁy*a‘a cos{a10 (—2adt +x—y) + 910 - alz} + kye% () aa, kze“aﬁawt}

Case 4:
' ' ’ ’ 3
St) = - 9aza, (t) +9aga; (t) +9a,a; (t) + 9a,ay, (t) + ayas  s(t)=0, a =0
9a,a;
a(t) =as(t), a;(t)=a;(t), a(t)=ap(t), ast)=0 k;=0

and ay, as, as, as, ag, a0, a1z, k1, ko are arbitrary constants. Utilizing the previously listed, trans-
formation eq. (2) can be used to derive the interaction solution of eq. (4):

2k ¢y
Ug (X, Y,t) =285k, < g {14 - 2—1} (10)
(kids +K,)?
where
- ky _ 1
Xa = [kleaa(t)+a7 (D+ay+asy+a,+a; | k3]2 kleag(t)Jra7 (O+2y+agy+a,+3; K,
la= e (0+a, (D+a,y+85y+a,+8,
Case 5:
5(t) = —9s(t)%ay (t) +18s(t)ay (t) + 26a3s(t)* +94ale(t)® +108a3s(t)? —56a3s(t) +16a3

18ag[£(t) —1](t)?

£)=0, a =0, ay(t)=ayt), %z%

a_{ILj(t) =0, a5=0, k=0, ky=0

, ) =a,(t), a=0, a,=0
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and ay, as, as, ag, ai, ke are arbitrary constants. Plugging the coefficients from earlier into
transformation eq. (2) renders the interaction solution of eq. (4):

Us (X, y,t) = 25 (11)
s
where
2O, 1)+ (2Xx—y)-a,]-2a,X
s =4agkokqe 0 cos(ay,)[&(t) - 21[&(t) —1]
()-8 (1) +a, (2X—y)—2;]-2a5 2
Cs = e(t)? |koe &(t) +k, cos(ay,)

Case 6:

2
5(t):—%, £t)=0, a, =0, at)=a(t), ag=0, a,(t)=0, ag=0, a,(t)=0

Ay =3, &3=0, k=0

and as, as, as, aio, a2, ko, ks are arbitrary constants. By placing the previous coefficients into
transformation eq. (2), the interaction solution of eq. (4) is obtained:

ug (X, y,1) - % 12

6 Z, (12)

where
Xo = 285K, k3ea‘5(7x)7ag [a5 cos(ayy +a,) — &g Sin(ayp Y +a,)]
Co =[ Ko™ 4 k; cos(ayy + alz)}2
Case 7:
o)=0o(t), e®)=e(), a =0, at)=as(t), a;t)=a;(t), a3=0 k=0
2 ) -1
ky=kys ks =0, ag——206LEO71 oy o)
£(t)

and ay, as, as, g, a12, ko are arbitrary constants. Incorporating the determinations of the coeffi-
cients into transformation eq. (2) provides the interaction solution to eq. (4):

Uz (%, Y,t) = ? (13)
7

where
Z? — 2a5 (a2 + a5)k1k2eas (t)_a7 (t)_asx+a'zy+a4_as

Co = [kze—37 (O+a5(=x)-8, kleaa(t)+agy+34 ]2
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Case 8:
S5t)=0, &(t)=2, a, =0, a,(t)=—4aa’t, a;=0, a,=-a
19adt

ay (t) = —2ajagt, a3=0, k=k, ky=k;, k3=0, a=0, a(t)=4a,ajt

and ay, as, as, ag, a1z, k1, ko are arbitrary constants. Substituting the value of the previous coef-
ficients into transformation eq. (2) gives the interaction solution of eq. (4):

Ug (X, ,t) = % (14)
8

where

Ze = 28,80k K, Sin Eag (18a3t —9x +9y) —%agt - alz}eaz(y“aét’*%

2
o= {kleaz(y4a‘§t)+""4 +kye 4% 4k cos E ag(18a3t —9x +9y) — %agt ~ay, }}

Case 9:
ot)=o(t,e(t)=0, a=0, a3(t)=a3(t), a;(t)=a,(t), =0, a;(t)=0, az=0
k]_:O, k2:0, k3:O

and ay, as, as, as, ag, a1z are arbitrary constants. Plugging the coefficients from earlier into
transformation eq. (2) renders the interaction solution of eq. (4):

Ug (X, y,t) =—2a3 tan? (agX + &y, ) — 288 (15)
Case 10:

2
5@):%, £)=0, a =0, ayt)=0, a,(t)=a,(t), a,=0

all(t) = 0, al3 = 0, k2 = O

and ay, as, as, as, ag, a1z, ki, ks are arbitrary constants. Inserting the previously mentioned into
eg. (2) gives the interaction solution for eq. (4):

Ui (X, Y1) = —? (16)
10

where
Jio = 289K (k€™ " [ag COS(BgX +8y5) — @, SiN(BgX + 835 )]+ 8gkg
&0 =[kg cOS(agX +ay, ) + k™Y ]2
Case 11:

ot)=95(t), et)=0, a=0 a,=0 ast)=0 a,(t)=a,(t), ay=0
a,(t)=0, a3=0 k,=0
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and as, as, as, ag, a1z, k1, ks are arbitrary constants. The previous coefficients are substituted in-
to transformation eq. (2) to obtain the interaction solution of eq. (4):

Uy (X, y,1) = —% 17)
11

where
T11 = 283k, {kie® "% cos[ay, () + agx + 8, ] + K3}
oy = tkg cOS[ay (1) +agX + ayp ] + ke V722
Case 12:

50 =00), s0=0, =0 a®)=0, a=-a, a)=a ), am=0
a(t)=ay(t), a3=0 k=0

and ay, as, as, as, 9, a12, ko, ks are arbitrary constants. The interaction solution for eq. (4) is
calculated by incorporating the previous coefficients into transformation eq. (2):

wﬂx%0=—§@ (18)
12

where
Tz = 2Kg (ke 18072 (a2 _ aZ) cos[ay, (1) + agX + ay,] -

—2agay sin[a; (t) + agX + a;,)] — ajks}
Gip = {koe O30 4k cosfay (1) +agx + &y, 1Y
Case 13:
ot)=0o(t), &)=0, a=0 a,=0 ast)=0 a;=0 a;=0 a,(t)=0 &,=0
a () =0, az=0, k=k, ky=ky ky=ks

and as, as, ag, a0, a12, ki (1 < i< 3) are arbitrary constants. To acquire the interaction solution
for eq. (4), the previous coefficients are put into transformation eq. (2):

wdn%0=—f§ (19)
13

where
T3 = 235K [(6% Ky +€ %K, ) COS(BgX +8y,) + K]
G1a =Ky COS(BgX + a,) + €%y +e7%k, I

Case 14:

2
§(t)=%, £t)=0, a,=0, at)=0, a;=0, a,(t)=0

ap =0, a;(t)=0, ;=0



Zhao, Z., et al.: Study on the Interactions Solution of Zakharov-Kuznetsov ...
2006 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 1999-2008

and ap, as, as, as, ag, a1z, ki (1 <i < 3) are arbitrary constants. In order to figure out the interac-
tion solution for eq. (4), the previous coefficients are used in transformation eq. (2):

Uy (X, Y, 1) = — 224 (20)
C1a
where
X4 = 2agk3‘{kzea'ﬁ’(iyyas [ag sin(agXx +ay,) + 8 COS(agX + ay,)] +
+a,k, (—e%Y %) sin(agX + ay,) + agk, e cos(agX + ay, ) + agks
Cia =[Ks cOS(agX + 8y, ) + k@™ ™ 4 ke (V)72
Case 15:
5(t) =[11a2e(t)* +9als(t)* —46a2s(t)* +54a2s(t)? —14a2s(t) +4ai {9 s(t) —1)(t)?)
2 t) -1
et)=¢t), =0, a(t)=0, a = —%, a,=0, ay(t)=0, a;=0, k =0
t 2 3 2 2 2
a(t) = J- 2ag[2ag£(s) +18a26g(s) —235] ds
. 9¢(s)

and ay, as, as, as, ag, a1z, ko, ks are arbitrary constants. Inserting the previously mentioned into
eg. (2) gives the interaction solution for eq. (4):

s (x,,t) = 435 1)

¢15

where

2a, {I Zaﬁ[zaés(s);:gazés(s)Z—zaé] ds}

15 = 4agkokqe %) {a0e(t)sin(ay,y +ay,) +agle(t) — 2[e(t) 1]

_zae{j2a6[2aée(s>3+18a;§e(s)2—2a§]ds} ?
) 9:(s)
"COS(8y0Y + &yp)}\ K3 €OS(aygY +ay,) + Kz %)
¢15 = aype(t)sin(ayy +ay,) +ag[e(t) — 2] cos(ayy +ar)
Conclusion

In this paper, the (2+1)-D ZK equation with variable coefficients is transformed into
a bilinear equation by Hirota bilinear method through variables u(x, y, t), and then the test
functions are constructed, which are then substituted into the transformed bilinear equation to
obtain the interaction solutions. This paper reveals that the Hirota bilinear method gives much
opportunities to find abundant solutions with physical understandings. It can not only catalyse
the growth of science and technology, but also promotes the advancement of mathematics,
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and it can be extended to fractal/fractional ZK equation [36-39] and the thermal displacement
prediction models [40, 41], and this paper could offer a starting point for future research into
non-linear problems.
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