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This paper considers a temperature-dependent thermal conductivity with memory 
property in a fractal space. The two-scale fractal derivative is adopted to model 
the temperature field in the spatial dimensions, and Caputo fractional derivative 
is used to describe its memory property. The variational iteration method is em-
ployed to solve the mixed model with great success. This paper offers a new win-
dow for studying intractable problems arising in porous media or unsmooth 
boundaries.  
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Introduction  

It is well-known that the Caputo fractional derivative [1-6] has memory and long-

range spatial correlation, and can describe physical phenomena and biochemical reaction pro-

cesses with memory, heredity and path dependence properties more accurately than integer 

order, which are often ignored in classical integer order models.  

Fractional calculus [7] is an extension of integral calculus, and it is a non-standard 

operator theory to describe many intractable problems with memory property which can not 

be treated by the traditional calculus. On the other hand, fractal calculus [8] have attracted 

much attention due to their wide applications to complex problems, for examples, fractal soli-

tary waves [9, 10], porous concretes [11-13], fractal MEMS systems [14-18], however, it 

can not deal with the memory property.  

It might be promising to couple Caputo fractional derivative and the fractal deriva-

tive to deal with phenomena with memory property in a fractal space. For this purpose, this 

paper considers a 2-D heat transfer equation with memory property in a fractal space, the 

governing equation can be expressed_ 
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 (1) 

where u is the temperature, kx and ky – the heat conduction coefficients in x- and y-directions, 

respectively, α, β, and γ are two-scale fractal dimensions [13] in time, x- and y-directions, re-

spectively, Dt


 – the Caputo time fractional derivative, and / x  and / x   – the He’s 

space fractal derivatives [19] in x- and y-directions, respectively:  

–––––––––––––– 
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The mixed model given in eq. (1) involves Caputo time fractional derivative for 

memory property, and the fractal derivative for temperature field in a fractal space. There 

were much literature using either a fractional derivative or a fractal derivative, see for exam-

ples, [20-23], but the mixed model was rare and it is much promising for a complex problem.  

It was reported that a porous medium has temperature-dependent heat conduction 

coefficients [20], in this paper we assume that: 

 n
x yk k u    (5) 

where μ and n are constants. So eq. (1) becomes: 

 D ( , , ) n n
t

u u
u x y t u u

x x y y



   

       

                

 (6)  

When α = β = γ = 1 and μ = n = 1eq. (6) is called classical Boussinesq equation  

[24-27]. The main purpose of the present work is to solve eq. (3) by He’s fractional variation-

al iteration method [28].  

He’s variational iteration method 

In this section, we briefly describe the variational iteration method, which is a useful 

mathematical tool to solving various non-linear problems, see for examples [29-32]. To illus-

trate the basic idea of this method, we consider the following non-linear equation: 

 ( , , ) ( , , ) ( , , )Lu x y t Nu x y t g x y t    (7) 

where L and N are linear and non-linear operators, respectively, and g – the source inhomoge-

neous term. 

The variational iteration method is to construct a correction functional for eq. (7) in 

the form: 

 1

0
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where λ is the general Lagrange multiplier, which can be identified optimally via the varia-

tional theory, and ku  is a restricted variation which means 0.ku   

The main steps of He’s variational iteration method requires first the determination 

of Lagrange multiplier, λ. Then the successive approximations 1, 0,ku k  of the solution u 
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will be obtained by using a given trial solution, u0. The approximate converges fast to the ex-

act solution, so the exact solution is: 

 lim k
k

u u


  (9) 

For fractional differential equation, we consider the following general case: 

 D ( , , ) [ ( , , )] 0t u x y t u x y t    (10) 

where Ω is a general function involving fractal derivatives. The variational iteration algorithm 

is:  
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The generalized Lagrange multiplier can be approximately identified: 

 1    (12) 

and the following iteration formulation is obtained: 
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Numerical example  

In this section, we consider the following 2-D heat transfer equation:  
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subject to the initial condition:  
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By using the variational iteration method, we construct a correction functional for 

eq. (14): 
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Taking the initial value:  



Liu, J.-J.: Two-Dimensional Heat Transfer with Memory Property in a Fractal Space 
1996 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 1993-1998 

 

1

2

0 ( , , ) ( , ,0)
(1 ) (1 )

x y
u x y t u x y

 

 

 
   

    
 (18) 

By the iteration formulation of eq. (16), we have: 
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and so on. 

Hence, the 4-term approximate solution is: 
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which is the initial condition term.  

It is obvious that the solution depends upon the initial condition of F, so the frac-

tional derivative can give a good description of the memory property.  

Conclusion 

In this work, the variational iteration method has been successfully applied to obtain 

the approximate analytical solution of 2-D heat transfer equation involving both the fractal de-

rivative and the fractional derivative. An example is given to illustrate the validity and accu-

racy of the method. The results show that the variational iteration method is efficient to han-

dle the mixed model with memory property.  
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