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A beam vibration originating in the beam porous structure or on a non-smooth 
boundary might make its vibrating energy concentrated on a single wave, leading 
to a solitary wave. This paper applies the variational approach to analysis of the 
soliton basic property, and the effect of the fractal dimensions on the solitary 
wave is elucidated. This paper is to draw attention the beam soliton property be-
yond its widely known resonance and periodic and chaotic properties.  
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Introduction 

In engineering, many vibration equations are inherently non-linear due to various in-

fluencing factors [1-4], the deflection vibration a beam is a good example. The previous lit-

erature mainly focused on the vibration equation instability [5-10], chaos [11] and bifurcation 

[12], however, the solitary waves were rarely studied, it is quite different from the resonance, 

and it might be dangerous if the wave peak is too large. Kim and Hong [13] found some new 

solitons of the well-known Duffing oscillator, and its dynamical properties are different from 

the forced vibration system resonance [14].  

The solitary wave originally came from the KdV equation [15], and now the fractal 

solitary theory [16-18] provides a connection between the solitary wave motion dynamics and 

the fractal dimensions, allowing the fractal geometry to control solitary wave properties. Ji, et 

al. [19] studied a transvers vibration of a porous concrete using a fractal vibration theory, and 

the fractal solitons were found. Kou, et al. [20, 21] showed that the chatter vibration can be 

effectively treated by the fractional convolutional neural network.  

In this paper, we will consider the a porous beam vibration using Hamilton principle 

[22, 23] to establish a fractal vibration model, and the best-case scenario is elucidated to con-

trol the solitons geometrically.  

Basic assumptions and equations 

Harada and Asakura [24] considered the influence of rotational inertia based on the 

Rayleigh's theory, Liu, et al. [25] considered the geometric non-linearity effect caused by the 
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maximum deflection of the beam and derived the non-linear deflection vibration equation us-

ing Hamilton's variational principle. This article is to extend the theory in [25] into a fractal 

space.  

According to [25], for a continuous beam, we assume that: 
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where ux, uy, uz represent the displacement in the directions of x, y, z, respectively. The W is 

the deflection in the direction of z.  

When considering the large deflection of the beam, the axial strain can be expressed: 
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Assuming a linear relationship between axial stress sxand strain ex, we can obtain: 
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where E is the elastic modulus of the material. 

When considering large deflection, the strain energy per unit length of the beam can 

be derived using the following formula: 
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Subsequently, when considering rotational inertia, the kinetic energy per unit length 

of the beam under this condition is comprised of two components: lateral kinetic energy and 

rotational kinetic energy. Its expression is: 
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where ρ is density of beams, 2d d

S

I z y z   – the rotational inertia, and d d

S

S y z    – the 

cross-sectional area of the beam. 

The total energy density per unit length is: 
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  (6) 

The Euler equation reads: 
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Then, by substituting eq. (6) into eq. (7), we can obtain: 
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Making / ,W x    the equation can be written: 
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where  

 0

E
c


  

represents the longitudinal elastic wave velocity and 1 /r I S  – the radius of rotation of the 

cross-section relative to the neutral axis. 

The article focuses on solitary wave solutions, so the following transformation is 

considered: 

 ( ),  ( )k x ct        (10) 

where k is the wave number, k = 2π/λ, c – the wave velocity, c = λf, f – the frequency. 

Then, by substituting eq. (10) into eq. (9), we can obtain: 
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Integrating eq. (11) twice, and setting the integral constants to be zero, we obtain: 
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Re-write eq. (12) in the form: 
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where 
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Equation (13) is the Duffing oscillator, it has been widely studied, see for examples 

[26-30]. The aforementioned derivation is for a continuum beam, for a porous beam or a beam 

moving along a non-smooth boundary, a fractal modification is needed.  

He, et al. [31] unlocked that the porous concrete beam vibration can be modelled by 

the fractal vibration theory, and its low frequency property was found, which has made a pro-

found impact on architectural engineering and civil engineering. It was found that the fractal 

dimensions of a porous beam affected greatly the vibration properties [32-34].  
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In this article, the porous beam is considered like that for a porous concrete. It was 

reported that the fractal dimensions affect the porous concrete mechanical properties [35-38] 

and the thermal property [39]. Hinted by above literature, we extend eq. (13) to its fractal 

partner in the form:  
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where μ represents the two-scale fractal dimensions [40-42] and 2 2D / DH   – the two-scale 

fractal derivative, ( ).k x ct      The definition and the basic properties of the fractal de-

rivative are discussed in details in [40-42], and it was widely applied to deal with complex 

problems, for examples, nanoscale circuits [43], nano/micro devices [44], fractal diffusion 

[45], fractal economics [46], fractal population dynamics [47], fractal boundary layer theory 

[48], fractal solitary theory [49] and electrospinning process [50]. It can also model Euler-

Bernoulli beams in a microgravity space [51], and viscoelastic polymer materials vibration 

[52].  

Solitary waves  

This paper focuses itself on the solitons of the porous beam vibration. The variation-

al formula of the non-linear bending wave equation established by the semi-inverse method 

[53], which is: 

 

2

2 431

2 2
0

1 D
( ) d

2 D 2 4H
J

k k






   



   
    
   
   (15) 

The semi-inverse method is an effective tool to establishment of a variational formu-

lation from a complex differential equation, see for examples [54-58]. Fractal variational for-

mulations were discussed in [59-61].  

The Euler-Lagrange equation of eq. (15) can be described: 
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From eq. (15), we can obtain He’s modified Weierstrass function [62]: 
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where the variable z is defined: 
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From eq. (17), it is obvious that: 

 ( , , , ) 0H z      (19) 

and 
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Equations (20) and (19) indicate that eq. (15) is a minimal variational principle.  

Subsequently, the solitary wave solution of eq. (14) can be assumed in the following 

form [18]: 
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where p is conversion coefficient. 

Substituting eq. (21) into eq. (15), we obtain: 
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According to the stability conditions of the previous equation, it can be obtained 

that: 
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By solving eq. (23), the value of p can be obtained: 
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So the solution of eq. (14) can be obtained: 
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To sum up, we obtain the solitary wave solutions of the non-linear bending wave 

equation: 
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When 1,   eq. (26) can be transformed into eq. (27): 
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Soliton property  

Without losing the generality, we only consider the following situations: 
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Based on the assumptions made earlier, we set λ = 3000 Hz, c = 3000 m/s, k = 2π, 

ρ = 7850 kg/m3, E = 2.1 × 105 Mpa, c0 = 5188.738 m/s, I = 490.9 mm4, S = 75.540 mm2, 

r1 = 2.549 mm, δ1 = –772.844/m2, δ3 = –1155.961/m2. Then, we change the value of fractal 

dimension to draw the function image of deflection ω, fig. 1, under different fractal dimensions.  

Through the analysis of fig. 1, the results indicate that the peak value of the non-

linear bending wave equation remains unaffected by the fractal dimensions. However, the 

shape of the non-linear bending wave equation is altered by changes in the fractal dimensions. 

Figure 1. Traveling wave solutions of the non-linear bending wave equation with 
different fractal dimension 

Figure 2 shows that, when t = 1, the value 

of the fractal dimensions indirectly impacts the 

bending change rate by influencing the distribu-

tion of influence and wave number within the 

system. A larger value of the fractal dimensions 

results in a greater change rate of bend. 

Conclusion 

On the basis of considering the influence 

of the moment of inertia and the geometric non-

linear effect caused by the large deflection of 

the beam, this paper derives the non-linear 

bending wave equation of the beam. Then, He's 

fractal derivatives are used to obtain the fractal 

form of the non-linear bending wave equation, 

and the corresponding solitary wave solution is 

obtained based on He's variational method. Fi-

Figure 2. The non-linear bending wave 
equation under different fractal dimension 
when t = 1  
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nally, the images of the solitary wave solutions of the non-linear bending wave equation are 

illustrated for different fractal dimensions, and the conclusions are drawn: The fractal dimen-

sion can change the waveform of solitary wave solution of the non-linear bending wave equa-

tion and indirectly impacts the bending change rate by influencing the distribution of influ-

ence and wave number within the system. 
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