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In this paper, a generalized equal width wave equation involving space fractal
derivatives and time Caputo fractional derivatives is studied and its approximate
analytical solution is presented by the Adomian decomposition method. An exam-
ple shows that the method is efficient to solve fractal non-linear partial differen-
tial equations.
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Introduction

Fractional calculus has been received a skyrocketing attention from mathematics,
physics to engineering, it can model effectively a seemingly stochastic diffusion [1, 2] or
seemingly irregular Brownian motion [3], it can be also used for noise detection [4], and
thermal displacement prediction [5]. The machine learning or deep learning [6-10] will be-
come more powerful to deal with innumerable data for neural networks and imagine pro-
cessing, and now a fractional model makes a complex and anomalous problem accessible.

A wave near the coast is affected by various random factors including the unsmooth
boundary and its memory property, the traditional models can not model these factors, and a
fractal-fractional model has to be considered. In this study, we consider the following general-
ized fractal-fractional equal width wave equation:

Kk ou ou
D?U(X,t)‘i‘au ax_ﬂ_D?(baX_zﬂ\Jz(l O<a<l, 0<ﬂ£l (l)
subject to the initial condition:
0 X 2
u(x,0) =g ————
(x,0)=¢ T p) (2)

where Dy is the Caputo time fractional derivative of order a [11, 12], 6/0x” — the He’s space
fractal derivative of order g [13-16], ¢ — the known function, and a, k, and b — the positive pa-
rameters.

When o = =1, eq. (1) was first introduced by Morrison, et al. [17] as the model
equation to describe non-linear dispersive waves, and it has a simple relation with the Benja-

* Author’s, e-mail: xinranyun@163.com



Qiao, Y.: Approximate Analytical Solution of Generalized Fractal ...
1976 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 1975-1982

min-Bona-Mahony equation [18-20]. Other similar equations were widely appeared in litera-
ture, and much achievement has been obtained. In this paper, we consider a modification with
the Caputo time-fractional derivative and He’s space fractal derivative [13-16]. This adapta-
tion considers that the Caputo fractional derivative has the memory property [21], and He’s
fractal derivative can effectively model phenomena in a porous medium [22-27].

Though eq. (1) can model exactly a memorial wave travelling along an unsmooth
boundary, it is difficult to be solved analytically, some famous analytical methods, e.g., the
homotopy perturbation method [28-32], are not appliable to eq. (1) directly. This paper adopts
the Adomian decomposition method (ADM) [33-36] for this purpose.

Basic definitions

In this section, we recall the basic definitions of fractional calculus and fractal calcu-
lus which shall be used in this paper. For more details see [37-41].

Definition 1. A real function f(x), x>0 is said to be in the space C,,4 R if there
exists a real number p> A, such that f(x)=x"f;(x) where f;(x)eC[0,o0) and it is said to
be in the space Cy ifand only if f( eC,, neN.

Definition 2. The Riemann-Liouville fractional integral operator of order & >0 of a
function f(x)eC,,A>-1 is defined:

1 % 4
Jf(X)=—— | (x=9)*"f(s)ds 3)
r(a)£
while the definition of Riemann-Liouville fractional derivative is:
o" _
RLDIu(x,t) :a?[Jt" qWu(x,1)] (4)
where n—1<qg<n and n s an integer.

Properties of the operator J“ can be found in [37] and we mention only the follow-
ing: For «, >0,x>0, and A >-1:

J9IPE(x) =% P f(x) (5)
J9PE(x)=370%F () (6)
Ja(xﬂ) — Mx/ﬁ—a (7)
IF'l+a+A4)
Definition 3. The time fractional derivative of u(x, t) in Caputo sense is defined:
1 (m)
DZu(x,t) = ———— [ (t =)™ u{™ (x,s)ds 8
FUx =y L9 ®)

for m—1<a<m,meN", x>0, and u(xt) eC".
Definition 4. The space fractal derivative of u(x, t) in the He’s sense is defined as
[41]:

UMY gy gy fim UCDZUD gy )
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and
ou(x,t 0 | ou(x,t
(xt) _ 0 [oux) 10)
ox¥F 8| oxf

The fractal derivative is also called as the two-scale fractal derivative, and it can be
widely applied to various unsmooth boundary value problems and porous medium problems,
[42-47].

Adomian decomposition method
The ADM [33-36] is a technique for solving nonlinear equations in the form:

u(x,t) =7+ 0(U) (12)

where ®:H — H is a non-linear mapping from a Banach space H into itself and 7 e H s
known.

The Adomian decomposition method assumes that the solution u can be expanded as
an infinite series:

u(x,t)=> u,(xt) (12)
n=0
and the non-linear term ®(u) can be decomposed:
@(Zun}zw) (13)
n=0 n=0

where the polynomials An(u) are given by:

n n
Ah(uo,ul,---,un):ia 0] quuk , n=012,-- (14)
ntog" | % 4=0
Substituting egs. (12) and (13) into (11) gives:

DUy =7+ A (15)

n=0 n=0

which is satisfied formally if we set:

W=~ 17)
Uny = Ay (18)

Then k-term approximate solution of eq. (11) is given by u=uy +U; +---+U,_;.
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Approximate solutions

In this section, we derive the main algorithm for solving the problem (1)-(2). Now,

eg. (1) can be written:

_ RLRl-« Kk ou a ou
Lu(x,t)="-Dx {au ax/’+Dt [baxzﬁ
where
0
"= A

which is an easily invertible linear operator.

)

Taking the operator L;* on both sides of eq. (19), we obtain:

ou ou
. -1| RL~Il-a k
u(x,t) =u(x,0)+ L; { D, Lau —axﬂﬂm—axzﬂ
Suppose that the solutions take the form:
u(x,t) = > u (x1)
k=0
and the non-linear term can be decomposed:
kK ou >
Uu —=
ox? nZ:;‘)Ah
where the polynomials A, can be expressed:
0
ok
Ay =Ug oF Uo
0 0
=ku&tu, ——uy +uf —-u
Al 0 laxﬁ 0 0 aXﬂ 1
k(k=1) -2 2 0Ug 0 k=12 , .k OU
= Up “U +Kuguy ——+—=Uy U; +Uy —=
A2 2 0 1 aX’B o+2 aXﬁ 0 1 0 aXﬂ

and so on.
Therefore, by using the ADM, we have:

Up (X, t) =u(x,0)

u(xt) =al;t (R-DE* Ay ) +b

OUg
ox?’

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Uy(x 1) =alit (ReDFep ) + b 0% (28)

2 i ox?P
U3(xt) = al; (R DEeA, ) + b2 (29)

s ‘ ox?#

and so on.

Then k-term approximate solutions of eq. (19) are given by u = up + U + ... + Uk1.
To illustrate the effectiveness of the previous algorithm, we consider a special case of egs. (1)

and (2):

o _ g au «[ ou
D{u(x,t)=—-u 8><_ﬂ+Dt Pl

with the initial condition:

_2J6E

_Ez+1

u(x,0)

where

=
E=exp

r@d+p)
By egs. (26)-(29), and (23)-(25), we obtain:

_2\J6E

N E%+1

—26 E(E? —)t*

(E? +1)°T(l+a)

—2J6 E(6E? — E* —1)t?*
(E? +1)°T(1+ 20)

Ug

U (x,t) =

Uy (x,t) =

26 E(E? -1)(22E% - E* —)t**

Us (x,t) = (E* +1)'T(1+3a)

Thus, the 4-term approximate solution of problem (30)-(31) is given by:

u(x,t) =ugy (X, t) +u (X, t) +u, (x,t) +uz(x,t)

where u; (i=0~ 3) are given in eq. (32).
When o = £ =1, egs. (30) and (31) become, respectively:

ou  ,ou o
ot ox  oxlot

u(x,0)=+/6cosh ™ (x).

(30)

(31)

(32)

(33)

(34)

(35)



Qiao, Y.: Approximate Analytical Solution of Generalized Fractal ...
1980 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 1975-1982

The approximate solution is:

2J6e* . ~2/6e (e -t Jee ¥ (e —e ™ —Dt? .

u(x,t)=
K= e (1+e2)? L+e )
=X (a=2X _ —2X _ o=4X _1\43
+J§ e (e 1)(222 . e Dt (36)
3(1+e)

which converges to the exact solution if the iteration process continues.

Conclusion

In this paper, the ADM has been successfully applied to obtaining the approximate
analytical solution of generalized fractal equal width wave equation. The example is given to
illustrate the validity and accuracy of the method. The results show that the method is effi-
cient to handle fractal wave equations with singularity [48] or He’s fractional derivative [49,
50].
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