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In this work, the fractal (3+1)-D modified KdV-Zakharov-Kuznetsov (MKdV-ZK) 
model is studied, which can represent weakly non-linear waves under the unsmo-
oth boundary. With the help of the fractal traveling wave transformation and the 
semi-inverse method, a fractal variational principle is obtained, which is a strong 
minimum one according to the He-Weierstrass function. From the variational 
principle, a fractal solitary wave solution is obtained, and the influence of un-
smooth boundary on solitary waves is studied and the behaviors of the solutions 
are presented via 3-D plots. This paper shows that the fractal dimensions can af-
fect the wave pattern, but cannot influence its crest value.  
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Introduction 

Traveling wave solutions of a non-linear PDE play a significant part in understand-

ing the action of non-linear physical phenomena, and have aroused research interest of physi-

cists and mathematicians. In order to gain precise solution, many methods have been trialed, 

for instance, the inverse scattering method [1], the modified simple equation method [2], the 

trigonometric function series [3], Hirota's bilinear method [4], the differential transformation 

technique [5], the sine-cosine technique [6], the tanh function expansion and its multifarious 

extension technique [7], F-extension method [8], exp-function method [9], and G-expansion 

method [10]. 

The non-linear (3+1)-D MKdV-ZK model reads: 

2 0t x xxx xyy xzzw w w w w w    
(1) 

where λ is a constant. 

The traveling wave solution of eq. (1) was constructed by using the enhanced 

(G'/G) expansion method [11]. The exact solution of time fractional KdV-ZK equation was 

determined by using the improved fractional sub-equation method [12]. The improved tan 

f(x)/2-expansion technique was recommended to build exact specific solutions of (3+1)-D 
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MKdV-ZK equation [13]. When MKdV-ZK model has a non-smooth boundary [14], a fractal 

modification has to be considered, which is: 

3 3 3
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      (2) 

where τ represents the two-scale fractal dimensions [15], t and x-, y-, and z- the time and space 

coordinates, respectively. He’s fractal derivatives [16, 17] are expounded: 
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In terms of fractal derivatives, we have the following chain rules: 

2
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 (5) 
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The fractal derivative is now widely used to describe non-smooth boundary prob-

lems or porous medium problems, for examples, the fractal Harry Dym equation [18], the 

fractal Klein-Gordon equation [19], the fractal KdV-Burgers-Kuramoto equation [20], the 

fractal Klein-Gordon equation [21], the fractal Fisher’s equation [22], the fractal Boiti-Leon-

Manna-Pempinelli equation [23], the fractal stress model [24], the fractal Fisher’s equation 

[25], the fractal variational principles [26-32], the fractal MEMS systems [33-36], the fractal 

vibration systems [37-40], and the fractal thermodynamics [41, 42].  

In this paper, we suggest an effective technique to settle the fractal (3+1)-D MKdV- 

-ZK equation.  

Fractal variational principle 

In order to seek the travelling wave solution of eq. (2), we present a fractal complex 

transformation [14]:  

( , , , ) ( )w x y z t w     (7) 

1 2 3h x h y h z k t             (8) 

where h1, h2, h3, and k are constants, τ-fractal dimension. 

Using the transformations eqs. (7) and (8), eq. (2) becomes: 
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where / HDw D   is He’s the fractal derivative with respect to .
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According to the fractal derivative chain rules, eq. (9) can be rewritten: 

3
2 3 2 2

1 1 1 2 1 3 3
( ) ( ) 0

H H

Dw D w
k h w h h h h h

D D

      

 


 
      (10) 

Integrating eq. (10) once with respect to   and setting the integral constant to be 

zero, we have: 
2
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We can construct the fractal variational principle of eq. (11) [43]: 
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The Euler-Lagrange equation of eq. (12) can be described: 
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From eq. (12) , we can obtain He’s modified Weierstrass function [30] is: 
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where the variable p is defined: 
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From eq. (14), it is obvious that: 
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Equation (16) indicates that eq. (12) is a minimal variational principle. 

Solitary wave solution 

Now we postulate the solution of eq. (12) [43]: 

( ) sech( )w      (17) 
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where γ can be dictated soon afterwards. Substituting eq. (17) into eq. (12), we obtain: 
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Taking stability condition of the above equation provides: 
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Consequently, from the previous equations, we achieve: 
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So the solution of eq. (11) can be obtained: 
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In view of the aforementioned, we achieve solitary wave solution of MKdV-ZK 

equation according to eq. (22): 
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Without loss of generality, we only consider the following situation: 
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We draw the demeanours of eq. (24) with different fractal dimensions as shown in 

fig. 1. Figure 2 manifests the comparisons of eq. (24) with dissimilar fractal dimensions when 

 tτ = 1 by the aid of the 2-D curved line. On the basis of figs. 1 and 2, we clearly see that for 

unequal fractal dimension values, the shape and peak position of waves will change, but with-
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out correcting vertex values. The final result is that the non-smooth boundary will not involve 

the peak of solitary waves, and it is expected that solitary waves will be used for coastal pro-

tection. 

Figure 1. The demeanours of eq. (24) with different fractal dimensions when λ = 2, k = 1, h1
τ = 1, h2

τ = 1, 
h3

τ = 1, yτ = 1, zτ = 1, (a) τ = 0.1, (b) τ = 0.3, (c) τ = 0.6, (d) τ = 0.8, (e) τ = 0.8, (f) τ = 1  

Conclusion 

In this exploration, we investigate the MKdV-ZK equation in a fractal space in the 

frame of the variational principle. The basic properties of fractal solitary waves are revealed 

graphically. The precedent is furnished to manifest that the proposed methodology is effica-
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cious, plain and very appealing, and it can be 

augmented to tackle with other various gen-

res of fractional wave equations [44] and frac-

tional-order convolutional neural networks 

[45-47]. The fractal thermodynamics [48] offers 

a novel window for investigating fractal solitary 

waves including the desert wave. The moun-

tain-river-desert conjecture proposed by Mei, et 

al. [49, 50] might be solved by the fractal soli-

tary theory.  
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