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Existence of variational principles for Navier-Stokes equations has been discuss-
ing for hundreds of years, but it has not yet been solved. In this study, a new per-
spective is proposed, which uses a traveling wave transform, so that a variational 
formulation can be established. Furthermore, the solitary wave solutions are 
solved by He’s variational method. 
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Introduction 

Any a motion should follow a nature law, the most famous one is the Hamilton prin-

ciple [1-3], which is a minimum variational principle. Navier-Stokes equations describe the 

motion of a fluid, which can be expressed: 
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where p is the pressure, ρ – the density, μ – the kinematic viscosity, and s – the time. In 3-D 

space, velocity vector is 1 2 3( , , ),      the components of Navier-Stokes equations in i-, j-, 

and k-directions are given by the following equations: 
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Navier-Stokes equations should also follow a variational principle, though much ef-

fort has been paid, its existence is still a big problem. Scientists only find some variational 

formulations for simple fluids [4-6]. A variational principle can give profound, original, and 

challenging insights of a fluid problem, especially the travelling waves. 

The well-known KdV equations [7-9] is the approximate case of the Navier-Stokes 

equations, there are various variational principles for KdV equations [10-12], and the modern 

soliton theory is originally developed from the KdV equation. This paper aims at searching 

for solitary waves directly from the Navier-Stokes equations by establishment of a suitable 

variational principle.  

Variational principle 

The variational formulation for eq. (1) is extremely difficult to be obtained. This pa-

per is to search for solitary waves from Navier-Stokes equations, so we focus ourselves on a 

constrained variational formulation by the following transformations [13-16]: 

 

1

2

3

( , , , ) ( )

( , , , ) ( )

( , , , ) ( )

( , , , ) ( )

i j k s

i j k s

i j k s

p i j k s P

 

 

 



 

 

 



 (3) 

 1 2 3 0i j k cs          (4) 

 

2 1

3 1

1p

 

 

 







 (5) 

where α, β, and  are all non-zero functions.  

Based on the previous transformation, we can convert the Navier-Stokes equations 

into the following ordinary differential equation: 
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Through the previous equation, we have: 
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Integrating (7), we have: 
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According to (7) and (8), we have: 
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Hence, eq. (7) can be represented: 
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So the variational formulation of (10) can be established by the semi-inverse method 

[17], which is: 
2
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The semi-inverse method [17] has been widely used to establish a suitable varia-

tional formulation from a governing equation, for examples, the variational principle for sin-

gular waves [18], water waves [19], nano/microelectromechanical systems [20], two-point 

boundary value problems [20], KdV-Burgers-Kuramoto equation [21], 3D unsteady fluids 

[22], thin films [23], solitary waves [24], long water waves [25], Schrodinger equation [26].  

From eq. (11), He-Weierstrass function [27] can be obtained: 
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From eq. (12), It is evident that: 
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Equation (13) shows that eq. (12) is a minimal variational principle. 
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Solitary wave solutions  

The objective of this section is to identify solitary wave solutions for Navier-Stokes 

equations by the obtained variational principle. The idea goes back to [28] variational ap-

proach to solitons, and it has been showing its validity for various wave equations, for exam-

ples, Boussinesq equation [29] and various the wave equations [30-36]. 

According to He’s variational theory [28], we assume that the solitary solution of eq. 

(11) take the following form: 

 2( ) sech ( )     (14) 

where 0,  0,   κ and υ are unknown constants to be determined later.  

Upon simultaneous solution of eq. (11) and eq. (14), the resulting expression is 

shown [28]: 
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The following are the results obtained: 
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Considering He’s variational method [28], it gives: 
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tends to zero, the eq. (16) can bring the following results: 
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Solving eqs. (19) and (20) we can determine and υ: 
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So the eq. (14) can be replaced by: 
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With eq. (11), the solitary wave solution of eq. (1) can be approximated: 
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Two examples 

This section gives two examples to verify the accuracy and effectiveness of He’s 

variational method [28]. 

Example 1. Consider variables in eq. (24), let λ1 = 2, λ2 = 1, λ3 = 1, α = 2, β = 2, 

ρ = 1,   = 1, c = 3, μ = –1, and H = 1. 

When j = 0, k = 0, and ε0 = 1, we obtain the solitary wave solution, fig. 1(a) in a sin-

gle direction: 
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Example 2. In this case, we use λ1 = 1, λ2 = 2, λ3 = 3, α = 2, β = 1, ρ = –2,  =1, 

c = –3, ρ = 2, and H = 2. 

When i = 0, k = 0, and ε0 = –2, the solitary wave solution, fig. 1(b), in another single 

direction can be obtained: 
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Figure 1. Solitary wave solutions for Navier-Stokes equations; (a) λ1 = 2, λ2 = 1, λ3 = 1, α = 2, β = 2,  

ρ = 1, ϑ = 1, c = 3, μ = –1, and H = 1, (b) λ1 = 1, λ2 = 2, λ3 = 3, α = 2, β = 1, ρ = –2,  ϑ=1, c = –3, μ = 2, 
and H = 2 



Wang, F.-Y., et al.: Solitary Wave Solutions of the Navier-Stokes Equations by … 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 1959-1966 1965

Conclusions 

Navier-Stokes millennium-prize problem is still an open problem [37], and there 

might have not exact solution to the Navier-Stokes equations, though the model has been 

widely used to explain various unsolved problems, e.g., the mountain-river-desert relation [38, 

39] and the dynamical properties of a rotating rigid body containing a viscous incom-pressible 

fluid [40]. This paper gives an alternative approach to the open problem, and exact solutions 

exist for solitary waves.  

In this work, the solitary wave solution of Navier-Stokes equations has been ob-

tained by He’s variational method. This paper offers a totally new window for searching for 

solitary wave solutions directly from Navier-Stokes equations instead of its various approxi-

mate forms like KdV equation or Burgers equation, making the soliton theory much accurate 

to model the solitary waves.  
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