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In this paper, a new split iterative compact difference scheme for a class of sys-
tem is constructed. Then, the conservation properties of the scheme are dis-
cussed, and the convergence of the split iterative difference scheme is analyzed 
by using the discrete energy method on the basis of the prior estimation. Finally, 
numerical experiments verify these properties of the new scheme. In addition, the 
numerical results also show the influence of fractional derivative on the variation 
of the transport equation. 
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Introduction  

Fractional calculus is arbitrary-order differentiation and integral, it is the promotion 

of integer-order calculus, the study of fractional calculus began at the end of the 17th century, 

in the nearly three centuries, through the unremitting efforts of many mathematicians, finally 

formed a variety of fractional calculus theory including Riemann-Liouville, Growald-Let-

nikov, Caputo, and Riesz. Due to the inability to give suitable physical and geometric expla-

nations, the study of fractional calculus remained purely mathematical for a long time. How-

ever, in recent decades, with the research and development of various subject areas, the 

memory-preserving properties of fractional differentiation can be more accurate than that of 

integer-order differentiation. As a result, fractional differential equations have been success-

fully used to study problems in thermophysics, chaos, complex viscoelastic materials, fluid 

power systems and other fields [1-7]. 

The analytical solutions of differential equations of fractional order usually contain 

some special functions, for example, Mittag-Leffler function, Fox function, Wright function, 

etc. These functions are obtained from infinite series and are very difficult to calculate numer-

ically. Especially for some non-linear differential equations, their analytical solutions are dif-

ficult to obtain. Therefore, it is of great theoretical importance and practical value to construct 

numerical methods to solve fractional order differential equations. So far, there are still a lot 

of challenging problems in the numerical computation of fractional order differential equa-

tions, such as the computation of long time histories and large spatial regions, and most of the 

research algorithms are focused on finite difference methods and finite element methods. 

Therefore, it is still an urgent and important research topic to find the numerical solutions of 

fractional order differential equations quickly and to further improve the numerical methods. 

–––––––––––––– 
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Numerous scholars have constructed different numerical formats for spatial fraction-

al order non-linear equations. For example, the Sine fitting spectral method for the splitting of 

the spatial fractional-order non-linear Schrodinger equation. The spatial fourth-order tight 

ADI format method [8, 9]. The spectral Galerkin method for the splitting of 2-D spatial frac-

tional-order non-linear equations. Split Fourier spectral methods [10, 11]. Local extrapolation 

methods for splitting formats of second-order exponential operators, and structure-preserving 

numerical methods. In long-time numerical simulations, structure-preserving numerical meth-

ods exhibit better simulation results than traditional numerical methods because they can in-

herit the inherent geometric properties of a given thermal system [12-16]. In the past decades, 

there have been many structure-preserving numerical methods for solving classical non-linear 

equations, among which the mass-conserving Fourier spectrum method for non-linear equa-

tions of spatial fractional order is an effective numerical method, and the efficiency of numer-

ical simulations with this method can be verified by numerical experiments. 

Dynamic model of heat transport  

and its analytical expression 

We consider the following heat transport [6]: 
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where (1,2), DRL t
  is the Bernhard Riemann-Joseph Liouville fractional derivative,  

Δu(x, t) is the Laplace operator defined on some polygonal region ( 1,2,3),d d   v and b 

are given functions, and 1 2
0, , ( ) ( ).u v f H H     

In Lagrange coordinate system, using fractional-order Fourier transform and Dar-

boux transform [7], the equation can be converted into a non-linear rigid Caputo-type frac-

tional-ODE initial value problem: 
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where 
0
D ( )C

t t y t
 denotes the γ-order Caputo derivative with respect to the solution y(t), 

 0, : , d d df t T C     is given by a sufficiently smooth function satisfying the fol-

lowing one-sided and classical Lipschitz conditions with constants L1, L2 ≥ 0. 
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where ·,· is the inner product on the m-dimensional complex space ,d
and   is the para-

metrization induced by this inner product，  0: , d d dt T C    ，and L1, L2 ≥ 0 are 

the Lipschitz constant. 

Let N be an even positive integer, and define the space lattice 

{ , 0,1, , 1}h jx a jh j N       , where h = L/N is the space step. For any positive integer 

Nt, define the time step τ = T/N, then the division of time and space is defined as 

,h h     where { , 0,1, , }.n tt n n ldots N     For the lattice function: 

 ( , )n
j j n hu u x t    
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introduce the following notation: 
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Let ( ){ , }h j j hu u u x    denote the space of nodal functions defined on Ωh. 

For any lattice function ,, hu v define the discrete inner product and the corresponding L2 

parametrization:  
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Furthermore, define the discrete Lp parametrization: 
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and the discrete L∞ parametrization: 

0 1max
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    

Using the discrete Gronwall inequality [5], let h, ψ, xl, al, bl, rl be some nonnegative 

numbers such that: 
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Suppose for any i with hri < 1, then when σi = (1 – hri)
–1, we have: 
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Define the function space SN = span{gj(x), j 0 0, 1,…, N – 1}, and the trigonometric 

polynomial gj(x): 
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Define the interpolation operator Ik: L
2(Ω) → Sk as: 
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Furthermore, if the first summand on the right-hand side of eq. (4) expands only to  

n –1 terms, then eqs. (4) and (6) hold for all σ > 0 and σl ≡ 1. 

From eqs. (4)-(6) we know that there exists a constant c2 > 0 such that: 
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where κ, ε > 2 such that 1/κ + 1/ε = 1/2. In particular, taking κ = 2/α, ε = 2/(1 – α), using the 

Sobolev embedding theorem and Taylor's expansion [6], we get: 
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According to Parseval's theorem [6], we get: 
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Given the constant σ Î[0, 1], we define the discrete fractional order Sobolev para-

metrization 
H



 and the semi-parametrization 
H



 as: 
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Let m and N be two specified positive integers: 
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and consider a numerical approximation to the tn at numerical approximation of the Caputo 

derivative. 

– When t Î[tj–m, tj](m < j ≤ n, m < n ≤ N), we can use m times Lagrange interpolation: 
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to approximate y(t), then obviously, 0

2 2 22 2| | , | |
h h h
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u u u u u    . It is easy to prove that 

the discrete Sobolev spaces defined above constitute fugitive linear spaces. Thus, it is shown 

that the unconditional convergence analysis for the conservation Fourier virtual spectrum 

method is very accurate: 
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– When α  = 2, the system (1) simplifies to the classical KGS [7] system. From the litera-

ture [14], it is known that this classical system has the following analytic solution: 
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It is easy to observe that ψ0(x) and ϕ0(x) decay rapidly to zero with |x| →∞, so the 

fluctuation function is negligible outside of ( , ),( 0, 0).x a b a b  

– When t Î[t0, tj](1 ≤ j ≤ m, j ≤ n ≤ N), s = 2 – 2α, at this point we can approximate y(t) by 

Lm,m(t), so: 
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– When s Î[2(1 – α), 2 – α]. At this point, using the Gagliardo-Nirenberg inequality [6]: 
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where β = (2 – α – s)/α] Î[0, 1]. Using the Young's inequality [7], we know that: 
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– If the exact solution of the initial margin value problem is sufficiently smooth, and  

1 < β ≤ α ≤ 2. Then the numerical solution Un of the difference format (18) converges to 

the exact solution of the initial-edge-value problem with O(τ2 + h4), depending on  

lh
∞-paradigm, and Φn converges to the exact solution of the initial-edge-value problem, 

depending on Ph
2-paradigm. 
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The following iterative asymptotic splitting algorithm is obtained: 
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where ω(t), φ(t), and ψ(t) are random processes. Substituting equation into equation (23), we 

can obtain the equations for the amplitude ω(t) and the phase angle ϕ(t): 
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Numerical simulation and analysis 

Consider the following two-dimensional non-linear fractional-order thermal 

transport system differential equation initial value problem (0 < γ < 1): 

 

2

2

D ( ) ( ) ( ) ( ) ( ) [ ( )]

D ( ) ( ) ( ) ( ) ( ) [ ( )]

(0, ) 0, (0, ) 0; (1, ) 1, (1, ) 1

RL t

RL t

u t u t u t v t u t sh v t

v t v t v t u t t ch u t

u t v t u t v t

v





    

    

    

  (11) 

where u and v are the propagation velocity of the isolated wave, and x0 denotes the initial 

phase. For the initial conditions of the studied fractional order system, the value of the initial 

moment is given, i.e. 
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Next, the propagation of a single wave is simulated for different values of α. Let  

σ = 0.8, x0 = 0, λ = 0.01, and solve the equations on x Î[0, 20], t Î[0, 10], and taking τ = 0.1 

and λ = 0.01. The numerical simulation results of the isolated waves |X| and U at different 

moments t are given in tabs. 1-3. 

Table1. Value of U at different time with λ = 0.01 and σ = 0.8 

 α = 1.5 α = 1.2 α = 1.0 α = 0.6 

t = 0 0.000993 1.000004 1.000011 1.000037 

t = 1 1.000026 1.000009 1.0000015 1.000080 

t = 3 1.000063 1.000071 1.0000019 1.000065 

t = 5 1.000103 1.000087 1.0000029 1.000067 

t = 7 1.000129 1.000083 1.0000037 1.000034 

Table 2. Value of U at different time with λ = 0.05 and σ = 1.0 

 α = 1.5 α = 1.2 α = 1.0 α = 0.6 

t = 0 1.543586 1.586378 2.623363 2.641441 

t = 1 1.544058 1.148977 2.623344 2.641328 

t = 3 1.544024 1.146375 2.623335 2.641339 

t = 5 1.544022 1.163741 2.623308 2.641348 

t = 7 1.544002 1.863728 2.623292 2.641413 

 

The effect of the fractional order α1 on the stochastic response of the fractional order 

system is discussed. Table 1 shows the numerical and analytical results of the steady-state 

probability density functions p(A), p(x), and p(y) for the amplitude, displacement, and velocity 

as the fractional order α1 is varied, with other parameters α2 = 1.2, λ1 = 0.2, λ2 = 0.1, σ1 = σ2 = 

0.03, ω = 1.0, D = 0.4. Table 2 also shows the numerical and analytical results of the steady-

state probability density functions p(A), p(x), and p(y)for the amplitude, displacement, and  
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Table 3. Global error and convergence order of the solution σ = 0.25, 0.5, 0.75  

δ τ Error  Order Error  Order Error  Order Error  Order 

0.25 1/2 1.3511·10–3  1.8129  1.7594·10–4  2.7323  2.6727·10–5  3.6859  4.2371·10–6  4.8742 

1/3 1.1415·10–4  1.7421 2.5183·10–6  3.1295 1.2015·10–5  3.8017 1.1298·10–8 3.7981 

0.50 1/2 1.6436e·10–3 1.4731 2.5894·10–3 2.9085 4.7846·10–4 3.4986 4.4013·10–4 4.9121 

1/4 1.0401·10–3 1.4503  2.5758·10–5 3.0811  4.5316·10–6  3.4814  2.1037·10–5 5.1104 

0.75 1/3 4.1523·10–3 1.3025  3.5341·10–4  2.6583  2.1315·10–4  3.1989  2.6012·10–5 4.7451 

1/5 2.6941·10–3 1.2013  3.3152·10–5 2.7986  1.2032·10–5  3.2847  4.5011·10–5 4.7963 

 

velocity as the fractional order α1 is varied, with other parameters α2 = 1.5, λ1 = 0.2, λ2 = 0.3, 

σ1 = σ2 = 0.06, ω = 1.2, D = 0.5. From tabs. 1-3 it can be seen that the numerical and analyti-

cal results agree well, verifying the validity of this asymptotic approximation method. It is al-

so clear from the table that the fractional order α1 has an important effect on the stochastic re-

sponse, and the smaller the order, the higher the probability of the system having larger mag-

nitudes, displacements and velocities. 

Conclusions 

As α changes, its energy is in a constant state of decay, and the evolution images of 

the heat field |ψ| and the medium field Φ when taking different α are given in the table. 

 For any 1 < α < 2/3 two symmetric radiation waves can always generate a larger ampli-

tude radiation wave after collision. At the same time, some symmetrically distributed 

larger radiation waves are also generated. The larger radiation wave will be strengthened, 

while the smaller one will be weakened. 

 When α becomes larger, the waveform of radiation will change slightly, and the wave-

form will become closer to the waveform when α < 2. 

 As α decreases, the moment of collision will be delayed and more radiation ripples will 

be generated after the collision occurs. 

As previously mentioned, we propose a new linear implicit conservation format for 

solving the fractional order heat transport equation. We adopt a new non-linear implicit expo-

nential difference method in time and a Fourier fitting spectral method in space to discretize 

the heat transport equation, and give energy conservation properties and optimal approxima-

tion results. Numerical experiments show that this format not only preserves the mass conser-

vation but also preserves the discrete parametrization of the numerical solution with a bound. 

The method has significant efficiency in the county compared to some existing structure-

preserving formats with the same order in time and space. 
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