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Because variational principles are very important for some methods to get the 
numerical or exact solutions, it is very important to seek explicit variational for-
mulations for the non-linear PDE. At first, this paper describes the modified Ben-
jamin-Bona-Mahony equation in fractal porous media or with irregular bounda-
ries. Then, by designing skillfully the trial-Lagrange functional, variational prin-
ciples are successfully established for the modified Benjamin-Bona-Mahony 
equation in the fractal space, respectively. Furthermore, the obtained variational 
principles are proved correct by minimizing the functionals with the calculus of 
variations. 
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Introduction 

It is always an attractive and hot topic in different scientific fields to solve a PDE 

with integer or fractional orders [1-7], because of its exorbitant existence for modeling vari-

ous phenomena, for examples, a mathematical model can be used for prediction the course of 

pandemics [8, 9]. A famous female Ukrainian mathematician, said that mathematics is an un-

known land [10]. A whole new land is now opening for mathematicians to explore the ap-

proximate and exact solutions of a variety of physical and mathematical models, and varia-

tional-based methods have been very useful and effective, such as Ritz technique [11-15], the 

variational iteration method [16-20], and Hamiltonian-based method [21]. 

When contrasted with other methods, e. g., the Taylor series method [22-24], varia-

tional-based methods show obvious advantages in effectiveness and simplicity and reliability 

[25-28]. The variational principles are so important in numerical simulation and analytical 

analysis that it becomes a branch of mathematics to seek an explicit variational formulation 

from non-linear PDE, and there are many schools worldwide, among which the semi-inverse 

school is an unprecedented monolith. The semi-inverse method [29-38] was firstly proposed 

in 1997 by Dr. Ji-Huan He, who is a famous Chinese mathematician. The semi-inverse meth-

od has been widely used to establish variational principles from the governing equations di-

–––––––––––––– 
* Corresponding author, e-mail: caoxiaoqun@nudt.edu.cn 

mailto:caoxiaoqun@nudt.edu.cn


Cao, X.-Q., et al.: Generalized Variational Principles for the Modified … 
2342 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2341-2349 

rectly, and has become a significant and effective tool in the variational theory far beyond the 

well-known Lagrange multiplier method, and variational variational principles are established 

for Korteweg-de Vries equation [39], Boussinesq equation systems [40], fractional dispersive 

long wave equations [41], Broer-Kaup equations [42], fractal high-order long water-wave 

equation [43], Burger equation [44], 1-D compressible flow [45], dynamic economics [46], 

Telegraph Equation [47], Chen-Lee-Liu Equation [48], and fractal solitary waves [49], fur-

thermore, the Lagrange crisis [50] frequently encountered in constructing variational princi-

ples can be avoided effectively by the semi-inverse method.  

In this paper, variational principles are established by the semi-inverse method for 

the modified Benjamin-Bona-Mahoni (BBM) equation [51-53] with spatio-temporal fractal 

derivatives, Wang and He [20] revealed that when time is fractal, the space must be also frac-

tal, and vice versa, this is the spatio-temporal relation in physics. Although the modified BBM 

equation has been extensively studied for a long time by some scientists [51-53], but, up to 

now, its variational principle in a fractal space and fractal time has not been dealt with. There-

fore, finding its variational principle is of great value, and might find lots of applications in 

numerical modelling and scientific researches. 

The fractional partners 

Usually, we can view physical motions and phenomena using two distinctly different 

scales [54-57]. One is the large scale, where Newton’s calculus is approximately valid and the 

traditional mechanics can be roughly applied. The other scale is a much smaller one, a scale of 

molecule size. Under such a small scale, the media becomes discontinuous, and the fractal cal-

culus [58, 59] has to be adopted. Usually, the smooth space (X, T) should be replaced by a frac-

tal space (Xβ, Tα), where β and α are fractal dimensions in space and time. In the fractal space, 

the modified BBM equation [51-53] can be transformed into the following form: 
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where the He’s fractal derivatives are defined [60]: 

 
0

0
0

00

( , ) ( , )
( , ) (1 ) lim

( )T T T
T

u T X u T Xu
T X

T T T 


 
 


  

 
 (2) 

 
0

0
0

00

( , ) ( , )
( , ) (1 ) lim

( )X X X
X

u T X u T Xu
T X

X X X 


 
 


  

 
 (3) 

For the fractal derivatives, we have the following chain rules: 

 

2

2X X X  

  


    (4) 

 

3

2X T X X T    

   


      (5) 



Cao, X.-Q., et al.: Generalized Variational Principles for the Modified … 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2341-2349 2343 

In the definitions given in eqs. (2) and (3), ΔX and ΔT are the smallest spatial scale 

for discontinuous boundary and the smallest temporal scale for watching the physical phe-

nomena, respectively. When the spatial scale is larger than ΔX, the boundary is considered as 

a smooth one, and traditional continuum mechanics works. However, on the scale of ΔX, the 

boundary is discontinuous, and it is considered a fractal curve. When we watch the wave mo-

tions on a scale larger than ΔT, a smooth wave morphology is predicted. However, when we 

observe the wave on the scale of ΔX, discontinuous wave morphology can be found [54-60]. 

In the fractal space, all variables depend upon the scales used for observation and the fractal 

dimensions of the discontinuous boundary. The fractal derivatives are widely used in applica-

tions for discontinuous media or discontinuous boundaries [61, 62]. 

Variational principles for modified  

BBM equation in the fractal space 

According to the basic properties of previously given fractal calculus, we have the 

following time and space scale transforms [54-60]: 

 t T  (6) 

 x X   (7) 

The modified BBM eq. (1) in fractal space becomes: 

 
2 + 0t x x xxtu u au u bu    (8) 

The modified BBM equation has the ability to simulate the propagation of shallow 

water waves. The traveling wave and soliton solutions in particular have been studied exten-

sively [51-53]. In eq. (8), a and b are parameters of constant values, which indicate the effects 

of high-order non-linearity and dissipation, respectively. Most of the problems in science and 

engineering are complex in nature due to the presence of non-linear terms and higher order 

derivatives in their governing equation. 

In order to find its variational principles, the modified BBM equation can be trans-

formed into the following form: 
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It is obvious that finding Lagrangian representations for the modified BBM equation 

is a non-trivial problem. Additionally, it is necessary to replace the physical field u(x, t) by its 

derivatives of potential fields. According to eq. (9), a potential function Π can be introduced: 
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Thus, eq. (9) will be automatically satisfied. We hope to construct different varia-

tional principles, according to eq. (9) and the field eq. (10). 

For establishing the variational principles, whose Euler-Lagrange equations will be 

equivalent to the modified BBM equation, we can firstly set a trial-functional in the form: 

 ( , ) ( , , , , , , , )d dt x xx xxt t xJ u L u u u u u x t      (11) 
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where L is the trial-Lagrange functional. In view of eqs. (9) and (10), we design by the semi-

inverse method [22-24], that L can be written: 
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in which F is an unknown function of only variable u and its derivatives to be determined lat-

er. There are many alternative methods for constructing the trial-functional [22-24]. The great 

merit of the above trial-Lagrange functional (12) is whose stationary condition with respect to 

Π leads to the following Euler-Lagrange equation: 
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After introducing eq. (12), eq. (13) is identical to the modified BBM eq. (8). Subse-

quently, by calculating the stationary conditions of eq. (12) with respect to u, we obtain: 

 
2

: 0
xx

L L L F

u u u ux

 

 

  
  

 
 (14) 

where ∂F/∂u is called the variational derivative [22-24]. By using eq. (12), eq. (14) can be re-

written: 
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We hope to find such an F, so that eq. (15) turns out to be the field eq. (10). Accord-

ingly, after substituting the eq. (10) into eq. (15), we get: 
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From eq. (16), unfortunately, we cannot identify F through the calculus of varia-

tions, because of existing the term 2αβuux
2. So, we have to modify the trial-Lagrange function 

L into a new form [33]: 
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Again, by calculating the variational derivatives of L with respect to Π and u, re-

spectively, the new Euler-Lagrange equations can be obtained: 
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In view of eq. (10) and ∂F/∂Π = 0, eq. (18) becomes: 

 3( 2 )( + ) 0
3

xx t
x

a
A B u bu u u

 
    

 
 (20) 



Cao, X.-Q., et al.: Generalized Variational Principles for the Modified … 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2341-2349 2345 

Because eq. (20) should be identical to eq. (9), we must set the coefficient of  ut to 

one. That is: 

 A + 2B = 1 (21) 

After substituting eq. (10) into eq. (19), we obtain: 
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In order to determine the unknown function F successfully, it is necessary to elimi-

nate the term u2uxx and 2
xuu simultaneously. Fortunately, it can be proved the following varia-

tional identity is correct: 

 2 2 2 2( ) (2 2 )x x xxu u uu u u u     (23) 

In order to apply the eq. (23) to eq. (22) properly, the coefficients of u2uxx and 2
xuu

must be equal. So we get: 

 1 – A = –2A (24) 

From eq. (24), we obtain A = –1. Furthermore: 

 
3 2 24

2 2 2 ( )
3

xx x xx

F
u bu au ab uu u u

u




       (25) 

From eq. (25), F can be identified easily: 
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Finally, we obtain the variational formulations for the modified BBM eq. (8), which 

read: 
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both of which are subject to the constraint equation Πx = u + buxx. The established variational 

principles are firstly discovered for the modified BBM equation by the semi-inverse method 

[22-24], and may find lots of applications in numerical simulations and scientific researches. 

In the following, we will prove the obtained variational principles correct. By making anyone 

of the previous functionals, eqs. (28) or (29), stationary with respect to independent functions 

u and Π severally, we can obtain two different Euler-Lagrange equations: 
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in which δΠ and δu are the first-order variation for Π and u, respectively. Substituting  

Πx = u + buxx into eq. (30) leads to the modified BBM equation, obviously. After substituting 

Πx = u + buxx into eq. (31), we can get that: 
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Because b is a nonzero constant, we can reach that Πt = –[u + (a/3)u3], which is 

identical to the second one of eq. (10). Hence, successfully, we proved the obtained variation-

al principles (28) and (29) are correct. In the fractal space (Xβ, Tα), the variational formula-

tions can be written into new forms: 
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Conclusion 

In this paper, variational principles have been successfully constructed for the modi-

fied BBM equation in the fractal space, respectively, by the semi-inverse method [22-24] and 

designing skillfully trial-Lagrange functionals. Then, the obtained variational principles have 

proved correct by minimizing the corresponding functionals. From the results of analysis, it is 

concluded that the variational principle for the modified BBM equation studied in this paper 

have two different integral formulations, from which the same control equations can be de-

rived. The procedure also reveals that the semi-inverse method [22-24] is effective and pow-

erful. According to the obtained variational principles, on the one hand, we can study possible 

solution structures for solitary water waves. On the other hand, they also provide hints for 

numerical algorithms, so eq. (1) can be solved numerically by the variational-based methods. 

In the numerical simulations and ocean engineering, it is of great importance to choose an ap-

propriate variational principle according to practical applications. Our work in the future will 
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focus on the dynamics of soliton in the modified BBM equation, by the variational approxi-

mation method using the established variational principles in this paper. 
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