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This paper studies the mechanical properties of the 2-D tri-axial braided compo-
site. A volume element is established, so that the classical laminate plate theory 
and the series-parallel model can be adopted to study a bi-directional stress- 
-strain response. Failure criteria are given and the failure strength is determined. 
The finite element simulation is used to verify the reliability of the present theo-
retical model.  
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Introduction 

Glass fibers, carbon fibers, and acrylonitrile fibers are widely used for fiber rein-

forced composites by a winding or braiding molding process, the mother materials include 

mainly epoxy resin. Compared with metal materials (such as steel, aluminum alloy, etc.), the 

fiber reinforced composites have the advantages in high specific stiffness, high specific 

strength and designability. After the in-depth development in the Second World War, 2-D and 

3-D braided composites have been widely used in aviation, navigation, sports, medical and 

other fields. The 2-D tri-axial braided composite material is composed of three fiber bundles 

interwoven, including the fiber bundle in the braided direction (the axial fiber bundle with an 

angle of 0°), and the offset fiber bundle with an angle of ±θ°.  

There are various approaches to the analysis of the mechanical properties and pro-

gressive failure of the braided composites, for examples, the experimental testing and the fi-

nite element simulation, and much achievement was obtained. However, experiments always 

cost much time and high money, while the numerical method requires much efforts in pro-

gramming and huge computation time, these shortcomings have hindered many practical ap-

plications, and many researchers have to find an alternative approach. Now it is widely used 

to find an equivalent stiffness of braided composites by combining the numerical simulation 

with mechanical and geometric parameters.  

Liu et al. [1] suggested an elastoplastic mechanical-thermal model for 2-D tri-axially 

braided composites, Wei et al. [2] adopted a machine learning-based method for short fiber-

reinforced composites, Shokrieh and Mazloomi [3] recommended an analytical method for 

calculating stiffness of 2-D tri-axial braided composites, Cater et al. [4] divided braided com-
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posites into different subunits to capture out-of-plane deformation and predict the elastic 

modulus of the materials, Deng et al. [5] realized bi-directional coupling of scales through 

top-down homogenization and decomposition process, effectively simulating the stiffness and 

failure behavior of 2-D tri-axial braided composites. Dang et al. [6-8] used the laminate theo-

ry to establish the stress-strain response relationship of braided composites and predict the 

failure process. 

At present, there were little literature on strength prediction and progressive failure 

prediction of braided composites, especially on 2-D tri-axial braided composites with small 

fiber volume fraction. Due to the inherent complexity of its mesoscale structure, the stiffness 

matrix of its mother material matrix and the fluctuation of axial fibers have to be considered. 

In this paper, a bi-directional reversible mapping relationship is established between the glob-

al stress-strain response in the volume element level and the local stress-strain response in the 

fiber bundle level for 2-D tri-axial braided composites. The equivalent thin layer elements are 

superimposed to form the laminated plate element, and then combine into the representative 

volume element. The global and local stiffness matrices can be finally obtained, and the pro-

gressive failure prediction can be carried out for the braided materials. 

Theoretical development 

Figures 1(a) and 1(b) show the top view and side view, respectively, of the 2-D tri-

axial braided composite representing the volume element. Obviously, the 2-D tri-axial braided 

composite structure, as shown in fig. 1(d), can be obtained by repeating the representative 

volume element. 

Figure 1. The 2-D tri-axial braided composite; (a) the volume element top view, (b) the volume element 
side view, (c) geometric dimensions of cells A and B, (d) geometric model of tri-axially braided fabric, 
(e) undulation of axial fiber bundle in the co-ordinate systems, (f) undulation of bias fiber bundle in the 
co-ordinate systems, and (g) undulation of the bias fiber bundle in the YZ plane  
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According to its structural symmetry, the representing volume unit is quartered in 

the axial direction, as shown in fig. 1(c). This part of the structure can be divided again into 

the unit A without axial fibers and the unit B with axial fibers. Due to the thickness of 2-D tri-

axial braided composites, twisting deformation will occur during stretching, but Cater et al. 
[4] believed that this effect can be basically ignored. Therefore, it can be considered that the 

stiffness of the quarter cell structure composed of elements A and B can represent the stiffness 

of the whole representative volume element, which is convenient for the division of elements 

A and B in the next step. The subunit A is divided into two equivalent thin-layered units 

(–θ°)/(θ°) in the direction of thickness after the subunit a is divided into subunit c containing 

only matrix in the axial direction. Similarly, unit B, or subunit b, can be approximated as a 

three-layer equivalent thin-layered element (θ°/0°/–θ°). The division of equivalent thin layer-

ing units is shown in fig. 1(c). 

Based on the classical laminated plate theory [9] for the thickness direction and the 

series-parallel model of in-plane direction, the mentioned partition process can be backward 

traced to obtain the equivalent stiffness of the representative volume element. 

According to the previous analysis, according to the symmetry, the structural me-

chanical properties of one quarter composed of elements A and B can represent the mechani-

cal properties of the whole representative volume element. The geometric division and stiff-

ness reassembly are shown in fig. 2. The equivalent stiffness of the fiber bundle in the global 

co-ordinate system needs to be determined after two co-ordinate transformations. 

Figure 2. Scheme of geometric division and stiffness reassembly for representative volume element 

Local co-ordinates (123) are used to describe the wavy fluctuation of the fiber bun-

dle, as shown in figs. 1(e) and 1(f). Four elastic constants, Exx, Eyy, Gxy, and vxy can be used to 

determine the stiffness matrix of the fiber bundle in local co-ordinate (123), as shown in 

eq. (1). The stiffness matrix of element c of the element A is expressed by the elastic modulus, 

Em, shear modulus, Gm, and Poisson's ratio, vm, in the form of eq. (2): 
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The 0° fiber is projected onto the XZ plane, as shown in fig. 1(e). The median line of 

projection fluctuation is described by Z1, i.e., eq. (3). The offset fiber is projected onto the YZ 

plane, as shown in fig. 1(f), and the median of its projection fluctuation is described by Z2, 

i. e., eq. (4):
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where j = θ when i = A and j = 0 when i = B. 
The actual fluctuation angle of Z1 is equal to the projection angle, and the angle be-

tween the plane of the actual fluctuation midline of Z2 and the plane of the projection fluctua-

tion midline is θ, so we have: 
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After the actual fluctuation angle of the fiber bundle is obtained, the stiffness matrix 

is calculated after the first co-ordinate transformation: 
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are calculated according to eqs. (5) and (6), respectively. 

Convert the prevous stiffness matrix into the equivalent stiffness matrix under the 

following global co-ordinates: 
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The stress-strain relationship of sub-elements a, b, and c can be written: 
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where [Cc] = [Cm] [Ca] and [Cb] can be obtained from eq. (9) and the laminates theory [10]: 
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Based on the series-parallel model [11], it can be assumed that the stress and strain 

responses in plane a and plane c of the sub-element have the following six relations: 
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where ka and kc are length coefficients in the X-direction, see fig. 1(c). The equivalent stiff-

ness matrix of the element A (CA
mn, m, n = 1, 2, 6) can be obtained: 
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Furthermore, the strain components of the sub-element a and the sub-element c can 

also be solved, which read: 
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The stiffness matrix CA of the element A can be obtained, and the stiffness matrix of 

the element B is given in eq. (12), using the series-parallel method, the effective stiffness ma-

trix of the single element (Cmn, m, n = 1, 2, 6) can be finally obtained: 
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Components of strain in elements A and B are: 

21 21 22

22 22 22 22

21 21 22

22 22 22 22

66

66 66

66

66 66

( )

( )

A B
X X X

B A B
A B
X X YB A B A

A B A B
A B A

B A
X X YB A B A

A B A B
B

A
XY XYB A

a c
A

B
XY XYB A

a c

k C C C

k C k C k C k C

k C C C

k C k C k C k C

C

k C k C

C

k C k C

  

  

  

 

 

 


 

 


 

 







 (18) 

where kA and kB are width coefficients in the Y-direction. 

Using the failure criterion of composite materials, the local stiffness of the equiva-

lent thin layer element should be determined. The laminate theory and the series and parallel 

model can be used to find the equivalent stiffness for strength prediction. 

It is necessary to determine the local stress components in the equivalent thin layup 

element in the failure criterion. Considering the external load [NX, NY, NXY] acting on the ele-

ment, the strain can be given by: 
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By using eqs. (18) and (16) in turn, the strain components of sub-elements a, b, and 

c can be obtained. The stress component of sub-element c is determined by eq. (11), and the 

local stress of equivalent thin layup element can be given by: 
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where [R3] is determined by eq. (10). 



Shi, H. Y., et al.: Stiffness and Progressive Failure Prediction of … 
2330 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2323-2334 

The failure of the sub-element c is determined by the maximum stress criterion. The 

local stress of the equivalent thin layered element is substituted into the following Huffman 

[12] failure criterion to determine the initial and progress of the fiber bundle failure during 

loading: 
2 2 2
1 1 2 2 12

1 2 2
( ) c t c t

ij
t c t c t c t c t c

X X Y X
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    
  

 
      (21) 

An iteration program is developed using some a mathematics software and incorpo-

rating the above obtained model to simulate the progressive failure process of 2-D tri-axial 

braided composites.  

The local stress is substituted into the failure criterion. If f(σij) < 1, no failure occurs 

and stiffness does not decrease. Now the load increases to σX = σX ± ΔσX or σY = σY ± ΔσY for 

the next iteration, if f(σij) ≥ 1, we adopt stress intensity ratios [13]: σ1
2/XtXc, σ2

2/XtXc, and 
2 2
12 12/ ,S and find to find the maximum ratio among them, so that the corresponding equivalent 

thin layer element failure model can be determined, and the corresponding local stiffness can 

be selected according to the failure mode. For example, we set E22 = 0 and G12 = 0, and E22 

keeps unchanged, if σ2
2/YtYc or 

2 2
12 12/S reaches it’s maximum, tensile failure, or compression 

failure, or shear failure occurs in the matrix [14]. This means that the matrix is broken while 

the fiber bundle can still withstand the load. Now we consider another example when E11 = 0, 

E22 = 0, and G12 = 0, if σ1
2/XtXc reaches the maximum, this implies that the tensile failure or 

compression failure in the fiber bundle occurs, and the equivalent element becomes totally 

damaged, and can not withstand any loads [14].  

The damage leads to stiffness degradation, which will change the overall stiffness 

matrix of sub-elements and elements and the stress distribution. So it is now necessary to 

check whether the material completely fails at the current loading level. If it fails, the corre-

sponding strength is recorded as the failure strength. Otherwise, an additional external load is 

acted σX = σX + ΔσX or σY = σY + ΔσY, and proceed the next iteration. 

Finite element model and the mechanical parameters 

Finite element (FE) simulation is used to verify the validity of the proposed model. 

We take a (0°)/(±72°) 2-D braided composite as a sample, which is made of T700s carbon fi-

bers with axial fiber bundle 24 K (0°) and offset fiber bundles 12 K (±72°), and E862 epoxy 

resin. The axial modulus and transverse modulus of T700s carbon fiber are 230 GPa and 

15 GPa, respectively, and the tensile and compressive strength of fiber are 4900 MPa and 

2400 MPa, respectively [15]. The E862 epoxy 

resin is isotropic, with Young's modulus of 

2.7 GPa, shear modulus of 1 GPa, tensile, com-

pressive and shear strength of 61 MPa, 92 MPa, 

and 45 MPa, respectively [16].  

The TEXGEN software, is used to estab-

lish the 3-D model of 2-D tri-axial braided 

composites, and the solid element (C3D8R) is 

used for discretization. As shown in fig. 3, due 

to the periodicity of the 2-D tri-axial braided composite and to impose more boundary condi-

tions on the fiber bundle during loading, the finite element cell model is horizontally translat-

ed by a quarter of the width of the cell (W/2). 

Figure 3. Representative volume element under 

axial tension and transverse tension 
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As shown in fig. 1(a), the distance between the two adjacent axial fiber bundles is 

W, the unit cell has a width of 2W and a length of 2L: L = W/tan(θ). The width of 0° fiber 

bundle is WA, and WB for θ° fiber bundles with an angle of δ and the gap: g = WB + 2WAcos(θ) 

+ 2δsin(θ). So we have W = WB/cos(θ) + WA + δtan(θ), where hθA, h0
B, and hθB are the equiva-

lent thin bedding element thickness for θ° in cell A, 0° in cell B, and θ° in cell B, respectively. 

Based on the above geometric analysis, the equivalent fiber volume fraction of each 

subunit is: 
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where d is the fiber diameter, Nfa and Nfb are the fiber numbers in axial direction and offset di-

rection, respectively. The composite’s geometrical parameter of equivalent thin layer are 

listed in tab. 1. 

Table 1. Geometric characteristics of 2-D tri-axially braided composites 

Parameter Value Parameter Value Parameter [%] Value 

θ [°] 72 h [mm] 0.560 aV 41.34 

W [mm] 18.446 Ah  [mm] 0.280 bV 31.15 

WA [mm] 3.30 Bh  [mm] 0.260 0
bV 56.00 

WB [mm] 3.50 0
Bh  [mm] 0.300 bV  31.15 

L [mm] 5.993 aV   [%] 41.34 – – 

The Chamis model [17] is used to determine the four elastic parameters (Exx, Eyy, 
Gxy, and vxy),  and five strength parameters (Xt, Xc, Yt, Yc, and S) of the equivalent thin-layed 

ele-ment of the micromodel. Elastic parameters and strength are listed in tab. 2. The 

compressive strength is calculated using the approach given in [18], which determines the 

compressive strength as the average of the three possible failure modes considered in the 

Chamis model (fiber fracture, buckling, and delamination). 

Results and discussion 

In this section, the analysis model is verified by the finite element simulation. The 

equivalent stiffness, stress-strain curve, and progressive failure behaviors are analyzed. 

The predicted stiffness is compared with that by the finite element simulation, see 

tab. 3, seeing a relatively good agreement, the errors might arise in the composite thickness, 

which is not considered in our model. 
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Table 2. Elastic moduli and strength of equivalent thin layer 

Equivalent 
thin layer 

Exx 
[GPa] 

Eyy 
[GPa] 

Gxy 
[GPa] 

vxy Xt 
[MPa] 

Xc 
[MPa] 

Yt 
[MPa] 

Yc 
[MPa] 

S 
[MPa] 

a-72° 96.7 5.7 2.6 0.33 2026 1051 49.5 74.7 35.1 

a-72° 96.7 5.7 2.6 0.33 2026 1051 49.5 74.7 35.1 

b-72° 73.5 5.0 2.1 0.33 1526 890 48.7 73.4 34.4 

b-0° 130.0 7.0 3.5 0.32 2744 1341 51.6 77.8 36.9 

b-72° 73.5 5.0 2.1 0.33 1526 890 48.7 73.4 34.4 

Table 3. Analytical results on stiffness 

Methods Exx [GPa] Eyy [GPa] 

FE 22.3 26.6 

Prediction 23.5 28.1 

The predicted strength is compared with that by the finite element simulation under 

axial and transverse tensile conditions, see fig. 4 and tab. 4. 

Table 4. Strength and failure strain under various loading conditions 

Methods Strength [MPa] Strain [%] Methods Strength [MPa] Strain [%] 

Axial FE 354 1.81 Transverse FE 376 1.58 

tension Analytical 375 1.84 tension Analytical 428 1.58 

Figure 4. Stress-strain curves under different loading condition;
(a) axial tension and (b) transverse tension 

It can be seen from fig. 4 that the stress-strain curves of our strength prediction sees 

a good agreement with that by the finite element simulation for the initial stiffness for both 

cases of axial and transverse tensile stresses. Due to the use of plane stress hypothesis 

(σ3 = τ13 =  τ23 = 0), our strength model has limitations of three dimensional prediction, how-

ever the relatively error is less than 14% in our prediction.  

The progressive failure process under axial and lateral loading conditions is com-

pared with that by the finite element simulation, see fig. 5.  
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Under axial tensile load, it is predicted that the matrix tensile failure occurs first in 

the ±72° equivalent thin bedding element in element B, followed by the matrix tensile failure 

in the ±72° equivalent thin bedding element in element A and the 0° equivalent thin bedding 

element in element B. Finally, the fiber tensile failure occurs in the 0° equivalent thin bedding 

element in element B. In the finite element results, the strain level corresponding to the failure 

of ±72° equivalent thin-layed element is consistent with our prediction, and the failure of 0° 

equivalent thin-layed element matrix occurs earlier, which also leads to a 5.4% difference in 

stiffness prediction. 

Under the transverse tensile load, it is predicted that the tensile failure of the matrix 

first occurs on the 0° fiber of element B, then on the ±72° equivalent thin layup element of el-

ement A, and finally on the 0° equivalent thin layup element of element B. In the finite ele-

ment analysis, the axial fibers first suffer tensile failure of matrix, and then the final failure is 

caused by the failure of offset fibers.  

Figure 5. Progressive failure prediction under axial tension and transverse tension; MT is the tensile 

failure of the matrix and FT – the tensile failure of the fiber 

It can be seen that under axial and transverse tensile loads, the failure modes and 

strain levels of the proposed model and finite element analysis are consistent in the progres-

sive failure progression. 

Conclusions 

In this paper, a mechanical model combining laminate theory with series-parallel 

model is used to simulate the axial and transverse stiffness of 2-D tri-axial braided composites 

under Chamis model [17]. Then progressive failure and strength analysis are introduced. The 

results of this paper are compared with those of finite element analysis, and a good agreement 

is seen.  

Since the theory of laminates and the series-parallel model are computationally sim-

ple and efficient, the analysis method in this paper can be further extended to other braided 

composites, providing an efficient algorithm for mechanical simulation in the design of other 

composites. Further study is to study the effects of electrical-mechanical coupling behaviors 

[19, 20] and the micro/nano structure [21] on the tri-axial braided composites properties.  
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