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The paper aims at predicting the remaining useful life of highly reliable and 
long-life products with multiple and multi-stage characteristics in the degrada-
tion process. Considering the unit-to-unit variability among the product units, a 
new bivariate and two-phase Wiener process model with random effects is estab-
lished. Schwarz Information Criterion is used to identify the change points of the 
degradation model, and the analytical expressions of life and remaining useful 
life are given by the concept of first hitting time. Furthermore, the appropriate 
Copula function is selected to describe the correlation between the two quality 
characteristics based on Akaike Information Criterion. A bivariate degradation 
model is established and the unknown parameters of the model are estimated by 
Markov Chain Monte Carlo method. Finally, the applicability and effectiveness 
of the proposed method are verified by the comparative analysis of turbine en-
gine. 
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Introduction 

With the development of science and technology, highly reliable and long-life prod-

ucts have been widely applied in engineering [1-4]. Due to the impact from a variety of ran-

dom factors, the performance of these products will inevitably degrade, leading to product 

failure. For such products, the degradation model based on stochastic process is a good choice 

for life prediction [5], among which Wiener process-based model has been widely applied due 

to its good mathematical properties [6, 7]. 

In recent years, it was assumed that the product degradation process presents a sin-

gle stage variation in the majority of Wiener degradation model. However, in engineering 

practice, because of the wear of the product, overload operation, environment change and oth-

er factors, there exist many different kinds of faults in the product degradation process. Most 

of these faults are not equal to the functional failure, which only exhibit the probability of 

degradation paths with two-phase or multi-phase pattern [8, 9]. Wang et al. [10] studied the 

trajectory change in the degradation process of display devices, and explained that the degra-

dation trajectory change was a common phenomenon during the degradation process.  

Modern reliability products usually have complex structure and diverse functions, 

which means that they may have two or more performance characteristics. Generally, the per-

formance characteristics, which degrades over time, are not mutual independent. Therefore, it 

–––––––––––––– 
* Corresponding author, e-mail: zz.yan@163.com 



Sun, L.-J., et al.: Bivariate and Two-Phase Degradation Modelling and… 
2296 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2295-2304 

is important to find suitable joint distribution function to model the dependency of perfor-

mance characteristics, which can predict the reliability of products accurately. In recent years, 

Copula function has been widely applied to estimate the remaining useful life of highly relia-

ble products with multiple relevant performance characteristics [11, 12].  

For meeting the requirements in engineering practice, this paper proposes a reliabil-

ity model for bivariate and two-stage Wiener process with random effects. Wiener process 

with random effect is used to describe the measurement error and individual difference in the 

degradation process. Copula function is used to describe the correlation between the two per-

formance characteristics, and unknown parameters are estimated by Markov chain Monte-

Carlo (MCMC) method [13]. Finally, the data of turbine engine is taken as an example to ver-

ify the effectiveness of the proposed method and the degradation model. 

Bivariate and two-phase degradation  

modelling with random effects 

The bivariate and two-stage degradation process model is mainly focused on prod-

ucts with two performance indexes and two stages of degradation process. It is assumed that 

there is only one change point in the degradation process, the occurrence time of the change 

point is fixed, and the degradation amount at the change point is known when the single per-

formance degradation process is described. Due to the correlation between the two perfor-

mance indexes, the Copula function is used to describe the correlation. 

Two-stage Wiener process degradation  

modelling with random effects 

The paper denotes the degradation process of the equipment by X(t). For the single-

performance and single-stage Wiener degradation process [14], the model can be expressed: 

 ( ) (0) ( )X t X t B t      (1) 

where X(0) is the initial degradation amount, and X(0) = 0, λ – the drift coefficient, σ – the dif-

fusion coefficient of the degradation process, and B(t) – the standard Brownian motion. 

Based on the previous model, the two-stage Wiener degradation process with change 

points is represented: 
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where τ is the occurrence time of change point in the degradation process, X(τ) – the degrada-

tion amount at the change point, λ1, λ2 – the drift coefficient, σ1 – the diffusion coefficient of 

the first-stage degradation process, and σ2 – the diffusion coefficient of the second-stage deg-

radation process. 

In engineering practice, the individual difference means that the same batch of prod-

ucts are influenced by different external and internal factors. Because there are differences in 

the performance degradation process between different individuals, the introduction of indi-

vidual differences in the degradation model is necessary. We assume that the drift coefficients 

λ1 and λ2 in the two-stage degradation process are random parameters, and distributions for 

the aforementioned parameters are specified as 
1 1 2 2

2 2
1 2~ ( , ), ~ ( , ),N N          the diffu-

sion coefficients σ1 and σ2 are determined parameters, and σ1 = σ2 = σ. Measurement errors are 

inevitable, which are influenced by factors of the sensor accuracy and operating environmen-
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tal noise. Therefore, it is necessary to introduce the uncertainty of measurement error in the 

process of establishing the model. In order to represent the measurement error, the degrada-

tion process { ( ), t > 0}Y t is: 

 ( )= ( )Y t X t    (3) 

where   is the measurement error, and 2(0, ).N d  

Suppose   is the failure threshold of the performance degradation process. The T is 

defined as the failure time of degradation process when the degradation reaches the failure 

threshold for the first time:  

 =inf{ : ( ) (0) }T t Y t Y     (4) 

where inf denotes the infimum. Based on these assumptions, the probability density function 

and distribution function of the first hitting time of the performance index degradation process 

considering the individual difference of the drift coefficient and the measurement error are:  
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Bivariate Wiener process degradation modelling 

Facing with the complex system, it is not reasonable to use a single variable to de-

scribe the reliability of products. When multiple indexes are used to describe the reliability of 

a complex system, the correlation between multiple indexes must be considered. Moreover, 

the correlation between indexes is often not a simple linear relationship. Therefore, Copula 

function is introduced to describe the correlation between variables.  

The Copula function was first proposed by Sklar [15], who proposed the idea so that 

multivariate joint distribution function can be cconstructed by associating the marginal distri-

butions of the variables. Under a situation with two dimensions, the Copula function can be 

defined as a 2-D joint distribution function in the space of [0, 1]2, in which the marginal dis-

tribution of each variable is uniformly distributed within the interval [0, 1]. 

 1 2 1 1 2 2( , ) [ ( ), ( ); ]F x x C F x F x    (7) 

where F(x1, x2) is the joint distribution function of x1 and x2, F1(x1) – the marginal distribution 

function of the variable x1, and F2(x2) – marginal distribution function of the variable x2,  

( )C  – a Copula function, and θ – the correlation parameter of the Copula function. In this 

paper, the Copula function is used to describe the correlation between the two degradation 

performances. Table 1 shows three common types of Copula functions. 

Table 1. Copula function types 

Copula type Copula distribution function 1 2( , ; )C u u   The value range of θ 
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A bivariate dependent degradation model of the system is developed using the 

Copula function. It is assumed that T(1) and T(2) stand for the failure time of two performance 

characteristics, respectively. The reliability function is: 
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  (8) 

Choosing different Copula functions will lead to different results. According to the 

actual situation, it is important to choose the appropriate Copula function. 

Akaike information criterion (AIC) [16] is to evaluate the quality of model, which 

has a wide range of applicability. So, the paper utilizes the AIC function to select the appro-

priate Copula function, it is defined: 

 ˆ2ln[ ( )] 2AIC L m     (9) 
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where ˆ( )L   is the likelihood function of the model, and m is the number of unknown parame-

ters in the likelihood function. 

Parameter estimation 

Suppose that there are N test units, and each unit is measured M times. Two perfor-

mance indicators are measured each time. In a degradation test, let ( )
,
k

i jy
 
be the degradation 

observation of the ith unit at the measurement time ,i jt , ( 1,2, ),i i N  ( 1,2, ),j j M
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Assume that the time of occurrence of the change point is known and is measured at 

the moment of sampling. Let: 
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denotes the first-stage degradation increment at time: 
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represents the second-stage degradation data at time: 
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According to the independent increment properties of the Wiener process: 
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follows the multivariate normal distribution, and its distribution expectation and the covari-

ance matrix are: 
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where  

 
1

( ) ( )
1diag[ ],

i

k k
iK t 

2

( ) ( )
2diag[ ],

i

k k
iK t   



Sun, L.-J., et al.: Bivariate and Two-Phase Degradation Modelling and… 
2300 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2295-2304 

 

( ) ( ) ( ) ( )

( ) ( )
1 2

· [ ]·[ ]

1 1 0 0 1 1 0 0

1 2 1 0 1 2 1 0

,0 1 2 0 0 1 2 0

0 0 1 2 0 0 1 2k k k k

i i i i

k k
i i

m m

P P

    

    
   
   
   
     
   
   
       

 

The probability density function (PDF) of ( )
,
k

i jy  is: 

( )

( )

( )
( )

( )

1
( ) ( ) ( ) ( ) 1 ( ) ( )2 2

( )

1
( ) ( ) ( ) ( ) 1 ( ) ( )2 2

1
(2π) exp { [ ]} [ ] { [ ]}

2

0
[ ]

1
(2π) exp { [ ]} [ ] { [ ]}

2

k

k

k
k

k

k k k T k k k
i i i i i i

ik

Y m

k k k T k k k
i i i i i i

i

y E y y E y

t
f y

y E y y E y

t









 


 
 




 

          
 


 

  
  

         
 

 

(12)  

According to the relevant knowledge of Copula function, the joint probability densi-

ty function of 
(1)y  and 

(2)y  is: 

 (1) (2)
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Determining the estimated value of the model parameters is the premise of reliability 

analysis using the bivariate two-phase Wiener process model. Based on Bayesian theorem, the 

joint posterior distribution of unknown parameters is: 

 π( ) ( )π( )y L y       

where 
1 2 2 1 2 21 1

(1) (1) (1) (1) (2) (2) (2) (2)(1) (1) (2) (2)π( ) π[ , , , , , , , , , , , , ]d d
                   is the joint pri-

or distribution of related parameters. The parameters to be estimated are 

1 2 21

( ) ( ) ( ) ( )(1) (2) ( ) ( ) ( )=[ , , ],[ , , , , , ( 1,2)].
k k k kk k kd k

              It is difficult to obtain sev-

eral model parameters estimates directly by optimizing the log-likelihood function, and two 

change points in the model also bring about difficulties to solve the parameters of the model. 

For the above problems, this paper uses the Gibbs sampling method [13] in the MCMC algo-

rithm to estimate the unknown parameters of the model. There are many ways to specify the 

prior distribution of the model which will not be introduced here because they are not the fo-

cus of this article. In this paper, the prior distribution of all parameters is assumed to be nor-

mal distribution, and the parameters will be estimated only by the degradation observations. 

Change-point detection 

The SIC function was proposed by Schwarz in 1978 [17], which has been applied to 

determine whether the model has a change point problem. The principle is that if there is a 

change point in the sequence, the entropy of the samples is greater than that of the samples 

which have no change point. The SIC function is defined [17]: 

 2ln ( ) lnSIC L p m    
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where ( )L   is the maximum likelihood function of the model, p – the number of free parame-

ters in the model, and m – the sample size. The assumptions which are made based on the SIC 

function include the following two hypotheses. 

Original hypothesis H0: There is no change point in the model if each parameter is 

equal. The SIC(m) based on original hypothesis H0 is: 
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Alternative hypothesis H1: There is a change point ( ) ,k
i  which divides the degrada-

tion process into two stages. The value of SIC(k) based on the alternative hypothesis H1 is 
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the original hypothesis H0 
will be rejected, which means there is a change point. At the same 

time, the estimated change point value ˆ kt   is: 
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Example verification 

Reliability optimization design is a hot topic in engineering applications [18, 19]. In 

order to verify the effectiveness of the proposed method, this paper uses the FD001 data set of 

NASA's C-MAPSS data set. The FD001 data set simulates the degradation data of each sta-

tion of the machine during the recession of the high-pressure compressor. Each engine is 

equipped with 21 sensors. In order to improve the accuracy of remaining life prediction and 

calculate conveniently, this paper selects the data collected from No. 9 sensor and No. 14 sen-

sor of the No. 11 engine for modeling. 

A large amount of random white noise is introduced into this data. Because the noise 

source is complex and unavailable, it is difficult to use the original observation data directly. 

In this paper, the moving average filtering [20] is used to eliminate the high frequency fluctu-

ation of degradation path. An alternative promising filtering is to use the tropical algebra  

[21, 22], which will be discussed in future. 
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Firstly, the two quality characteristics are detected by the SIC function to determine 

the occurrence time of the change point. Then, the corresponding SIC values are calculated 

respectively and the values of change point time are obtained to be (1) 185(cycle), 
(2) 164(cycle).   

Next, the parameter vectors (1)  and (2)  are estimated according to the MCMC 

algorithm [23], as shown in tab. 2. 

Table 2. Estimation of parameters 

Parameter m(1) σ(1) m(1) σ(1) σ(1) d(1) 

Value 0.1492 0.003743 1.2061 0.001571 0.1994 0.003004 

Parameter m(2) σ(2) m(2) σ(2) σ(2) d(2) 

Value 0.1001 0.004499 0.6461 0.002008 0.2036 0.002981 

 

It can be seen from tab. 2 that there are obvious differences between the first and 

second stage model parameters for both PC1 and PC2, which shows that the rate of degrada-

tion has changed at different stages. In addition, the corresponding Copula parameters are 

given for different Copula functions. In order to compare the fitting performance of each 

model, the corresponding AIC values are given in tab. 3. 

Table 3. The AIC for the degradation models 

Copula function Gaussian Frank Plackett 

θ value 0.8099 2.5503 16.1457 

AIC –132.3824 –262.6132 –89.1166 

 

From tab. 3, it can be seen that the value of AIC for Frank Copula function is small-

er than the other two AIC values. According to the fitting results, Frank Copula is more suita-

ble for describing the degradation modeling of turbine engines. 

Conclusion 

In this paper, aiming at several common problems of degradation equipment in en-

gineering, we establish corresponding degradation models and perform remaining life predic-

tion. To reflect the unit-to-unit variability, random effects are incorporated into a two-phase 

Wiener process model with measurement errors. In addition, the paper assumes that a product 

has two quality characteristics, and the dependence of them is described by the Copula func-

tion. Then, we establish the bivariate Wiener process model and derive the PDF analytic ex-

pression of a two-phase Wiener process model with random effects and measurement errors 

under the concept of first hitting time. The paper also evaluates product remaining useful life 

based on the Winner process. Gibbs sampling in MCMC algorithm is used to gain the estima-

tors of unknown parameters of the models. Finally, the effectiveness of the proposed models 

and methods are verified by the comparative analysis of turbine engine example. The future 

research frontiers are the stochastic process modeling for renewable energy with time varia-

bility [24], the stochastic fractal to reliability optimization [25], fractal degradation models 

[26] for nano/micro devises [27, 28]. 
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