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The stochastic P-bifurcation behavior of bi-stability in a generalized van der Pol 
oscillator with the fractional damping under colored noise and thermal excitation 
is investigated. Firstly, using the principle of minimal mean square error and lin-
earization method, the non-linear stiffness terms can be equivalent to a linear 
stiffness which is a function of the system amplitude, and the original system is 
simplified to an equivalent integer order van der Pol system. Secondly, the system 
amplitude stationary probability density function is obtained by the stochastic 
averaging, and then based on the singularity theory, the critical parametric con-
ditions for the system amplitude stochastic P-bifurcation are found. Finally, the 
types of the stationary probability density function of the system amplitude are 
qualitatively analyzed in each area divided by the transition set curves. The con-
sistency between the analytical results and the numerical results acquired from 
Monte-Carlo simulation also testifies the theoretical analysis in this paper and 
the method used in this paper can directly guide the design of the fractional order 
controller to adjust the response of the system. 
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Introduction 

Fractional calculus [1-5] is a generalization of the traditional integer-order calculus. 

It is well-known that the integer-order derivative can not express the memory characteristics 

of the viscoelastic substances, while the fractional derivative contains convolution, which can 
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express the memory effect and shows a cumulative effect over time. Therefore, the fractional 

derivative is a more suitable mathematical tool to describing memory characteristics [6-9] and 

has become a powerful mathematical tool for the study in the research fields such as anoma-

lous diffusion, non-Newtonian fluid mechanics, viscoelastic mechanics and soft matter phys-

ics. Comparing with the integer-order calculus, the fractional calculus can describe various 

reaction processes more accurately [10-12], thus, it is necessary and significant to study the 

mechanical characteristics and the fractional order parametric influences on such systems. 

Recently, many scholars have studied the dynamic behavior of non-linear multi-

stable systems under different noise excitations and achieved fruitful results. Liu et al. [13] 

studied the response of a strongly non-linear vibro-impact system with Coulomb friction ex-

cited by real noise, and analyzed the P-bifurcation by a qualitative change of the friction am-

plitude and the restitution coefficient on the stationary probability distribution. Some re-

searchers [14-16] studied the van der Pol-Duffing oscillators under Levy noise, color noise, 

combined harmonic, and random noise, respectively, the stochastic P-bifurcation behaviours 

of the noise oscillators were discussed by analyzing changes in the system stationary probabil-

ity density function (PDF), and the analytical results of the bimodal stationary PDF were ob-

tained, showing that the system parameters and noise intensity can each induce stochastic  

P-bifurcation of the systems. Wu and Hao [17-19] investigated the tri-stable stochastic P-bi-

furcation in a generalized Duffing-van der Pol oscillator under additive Gaussian white noise, 

multiplicative colored noise, combined additive and multiplicative Gaussian white noise, re-

spectively, they obtained an analytical expression of the system stationary PDF of amplitude 

and analyzed the influences of noise intensity and system parameters on the system stochastic 

P-bifurcation. Chen and Zhu [20] studied the response of the Duffing system with fractional 

damping under the combined white noise and harmonic excitations, and showed that variation 

of the fractional derivative order can arouse the system stochastic P-bifurcation. Huang and 

Jin [21] discussed the response and the stationary PDF of a single-degree-of-freedom strongly 

non-linear system under Gaussian white noise excitation. Li et al. [22] studied the bi-stable 

stochastic P-bifurcation behavior of the van der Pol- Duffing system with the fractional deriv-

ative under additive and multiplicative colored noise excitations and found that changes in the 

linear damping coefficient, the fractional derivative order and the noise intensity can each 

lead to stochastic P-bifurcation in the system. Liu et al. [23] investigated the Duffing oscilla-

tor system with fractional damping under combined harmonic and Poisson white noise para-

metric excitation, and then analyzed the asymptotic Lyapunov stability with probability of the 

original system based on the largest Lyapunov exponent. Chen et al. [24] studied the primary 

resonance response of the van der Pol system under fractional-order delayed negative feed-

back and forced excitation, and obtained the approximate analytical solution based on the av-

eraging method. Chen et al. [25] proposed a stochastic averaging technique which can be used 

to study the randomly excited strongly non-linear system with delayed feedback fractional-

order proportional-derivative controller, and obtained the stationary PDF of the system.  

Due to complexity of the fractional derivative, the parametric vibration characteris-

tics of the fractional system can only be analyzed qualitatively, while the critical conditions of 

the parametric influences can not be obtained. In practice, the critical conditions of the para-

metric influences play a vital role for the analysis and design of the fractional order systems. 

Additionally, the stochastic P-bifurcation of bi-stability for the generalized van der Pol system 

with the fractional damping has not been reported in the open literature. In this paper, taking a 

generalized van der Pol system with a fractional damping excited by multiplicative Gaussian 

white noise from thermal excitation as an example, non-linear vibration of this kind of frac-



Li, Y., et al.: Analysis of the Stationary Probability Density of … 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2189-2199 2191 

tional order systems is studied through the fractional derivative. The transition set curves and 

critical parameter conditions for the system stochastic P-bifurcation are obtained by the singu-

larity method. The types of the system stationary PDF curves in each area of the parameter 

plane are analyzed. We also compare the numerical results from Monte-Carlo simulation with 

analytical solutions obtained by the stochastic averaging. The comparison shows that the nu-

merical results are in good agreement with the analytical solutions, verifying our theoretical 

analysis. 

Derivation of the equivalent system 

The initial condition of the Riemann-Liouville derivative has no physical meaning, 

while the initial condition of the system described by the Caputo derivative has not only clear 

physical meaning but also forms the same initial condition with the integer-order differential 

equation. Therefore, in this paper we adopt the Caputo fractional derivative: 
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where ,m N [ , ],t a b
( ) ( )mx t  is the m-order derivative of x(t) and Γ(m) is the Gamma func-

tion, which satisfies Γ(m + 1) = mΓ(m). 

For a given physical system, the initial moment of oscillators is t = 0 and the Caputo 

derivative is usually expressed: 
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where 1 , .m p m m N     

In this paper, we study the generalized van der Pol system with the fractional damp-

ing excited by additive Gaussian colored noise excitation: 

 2 4 2
1 2 0( ) [ ( ) ( )] [ ( )] ( ) ( )C px t x t x t D x t w x t t          (3) 

where x(t) is the displacement of the system, ε – the linear damping coefficient, α1 and  

α2 – the non-linear damping coefficients of the system, w – the system natural frequency, 

0 D [ ( )]C p x t – the p(0 ≤ p ≤ 1) order Caputo derivative of x(t), which is defined by eq. (2), and 

ζ(t) – the Gaussian colored noise from thermal excitation with zero mean and auto-correlation 

function, which satisfies: 
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where τ and D denote the correlation time and the intensity of the colored noise, respectively.  

Meanwhile, ζ(t) can be obtained through a first-order low pass filter by passing the 

Gaussian white noise ζ(t): 
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The fractional derivative has the contributions of damping force and restoring force 

[26], hence, we introduce the equivalent system: 

 2 4 2
1 2( ) [ ( ) ( )][ ( ) ( ) ( ) ( )]+ ( ) ( )x t x t x t C p x t K p x t w x t t          (6)  

where C(p) and K(p) are the coefficients of the equivalent damping and equivalent restoring 

forces of the fractional derivative 0 D [ ( )],C p x t  respectively. 

Applying the equivalent method mentioned in [23], we get the ultimate forms of 

C(p) and K(p): 
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Therefore, the equivalent van der Pol oscillator associated with system (6) can be 

written: 
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Stationary PDF of the system amplitude 

Linearizing the cubic and quintic stiffness terms and taking the undetermined damp-

ing and stiffness coefficients as functions of the system amplitude, the vibrational structure of 

the equivalent system can be rewritten [27]: 
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To determine the coefficients C(a) and K(a) in eq. (10), the error between system (8) 

and system (10) is defined by: 
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Assuming that the system (10) has the solution of the following form: 
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where 2 2
0 cos( /2),pw w w p    using the generalized harmonic balance technique and 

making the error (11) minimized in the mean square sense, the undetermined coefficients C(a) 

and K(a) can be obtained [27]: 
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Substituting eq. (13) into eq. (10) gives the equivalent system 
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Assuming that system (14) has the solution of the periodic form, we introduce the 

following transformation [28]: 
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where Ω is natural frequency of the above equivalent system (14), a(t) and θ(t) represent the 

amplitude and phase processes of the system response, respectively, and they are both random 

processes. 

Substituting eq. (15) into eq. (14), we obtain: 
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in which: 
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Equation (16) can be treated as the Stratonovich stochastic differential equation, and 

by adding the relevant Wong-Zakai correction term, we transform it into the corresponding 

Ito stochastic differential equation: 
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where B(t) is the normalized Wiener process and: 
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By the stochastic averaging [29] of eq. (18) over Φ, we obtain the following aver-

aged Ito equation: 
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where 
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Equations (20) and (21) show that da  does not depend on θ, the averaged Ito equa-

tion of a(t) is independent of θ(t) and that the random process a(t) is a 1-D diffusion process.  

Thus, the reduced Fokker-Planck-Kolmogorov (FPK) equation of a(t) can be writ-

ten: 
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The boundary conditions are: 

 

( ) , ( , ) as 0

( ) 0, 0 as

p a c c a

p
p a a

a

    


  



  (23) 



Li, Y., et al.: Analysis of the Stationary Probability Density of … 
THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2189-2199 2195 

Based on the boundary conditions given in eq. (23), the amplitude stationary PDF 

can be obtained: 

 1
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where C is the normalized constant that satisfies: 
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Substituting eq. (21) into eq. (24), we get the explicit expression of stationary PDF 

of the system amplitude a: 
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where C is the normalization constant and: 

 

2 2 2
1

1 2 4 6
2 1 2

2 2
2 2 2 1

(1 )

π
sin (24 3 )

2

(5 6 )π π
cos cos

2 2 8

p

p p

p
w a a a

a ap p
w w w



  

 




   

   


   

 (27) 

Stochastic P-bifurcation of the system amplitude 

Stochastic P-bifurcation means that the changes in number of the stationary PDF 

curve peaks. To obtain the critical parametric conditions for stochastic P-bifurcation, we ana-

lyze the influences of parameters on the system stochastic P-bifurcation by using the singular-

ity theory in this section. 

For the sake of convenience, ( )p a is expressed by: 

 1 2 1 2( ) ( , , , , , , )exp[ ( , , , , , , )]
C

p a R a D w p Q a D w p
D

       (28)  

in which: 

 

2 2 2
1 2 3

2 2 2 1 2 4 6
1 2

1 2 3

2 2
2 2 2 1

( , , , , , , , ) (1 )

π
(1 ) sin (24 3 )

2( , , , , , , , )
48

(5 6 )π π
cos cos

2 2 8

p

p p

R a D w p a

p
w a a a

Q a D w p
D

a ap p
w w w

    

   
   

 




  

   

 


   

 (29) 

Based on the singularity theory [30], the stationary PDF of the system amplitude 

needs to satisfy: 
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Substituting eq. (28) into eq. (30), we obtain: 

  20, 2 0H R RQ R R Q RQ RQ              (31) 

where H is the condition for the changes in number of the PDF curve peaks. 

In this part, the influences of p and D on the system are investigated, and the param-

eters are taken as α1 = 1.51, α2 = 2.85, w = 1, and τ = 0.1. According to eqs. (29) and (31), we 

obtain the transition set for the system stochastic P-bifurcation with the unfolding Parameters 

p and D shown in fig. 1. 

Based on the singularity theory, the topo-

logical structures of the stationary PDF curves of 

different points (p, D) in the same area are quali-

tatively identical. By taking a point (p, D) in 

each area, we can obtain all varieties of the sys-

tem stationary PDF curves that are qualitatively 

different. The unfolding parameter p–D plane is 

divided into three sub-areas by the transition set 

curve. For the sake of convenience, each area in 

fig. 1 is marked with a number. 

We first analyze the stationary PDF of 

amplitude p(a) for a point (p, D) in each of the 

three sub-areas of fig. 1, and then compare the 

analytical solutions with the numerical data ob-

tained by Monte-Carlo simulation from the original system (3) using the numerical method 

for fractional derivative [25]. The corresponding results are shown in fig. 2. 

From fig. 1 we can see that, the parameter area where the PDF occurs bimodal is 

surrounded by two curves. And when the parameter (p, D) is taken as p = 0.5, D = 0.001 in 

area 1, fig. 2(a), the PDF p(a) has a stable equilibrium. When the parameter (p, D) is taken as 

p = 0.6, D = 0.004 in area 2, fig. 2(b), the PDF p(a) has a stable limit cycle far away from the 

origin and the probability is not zero near the origin, there are both the limit cycle and equilib-

rium in the system simultaneously. When the parameter (p, D) is taken as p = 0.3, D = 0.008 

in area 3, the PDF p(a) appears in the form of a stable limit cycle at the moment.  

Apparently, the stationary PDF p(a) in any two adjacent areas in fig. 1 are very qual-

itatively different. Regardless of the exact values of the unfolding parameters, if they cross 

any line in this figure, the system will demonstrate stochastic P-bifurcation behavior. There-

fore, the transition set curves are just the critical parametric conditions of the system stochas-

tic P-bifurcation. The analytic results shown in fig. 2 are well consistent with those numerical 

results obtained by Monte-Carlo simulation from the original system (3), further verifying the 

theoretical analysis and showing that it is feasible to use the methods in this paper to analyze 

the stochastic P-bifurcation behavior of fractional order systems. 

Compared with the integral-order controllers [31-37], the fractional-order controllers 

have the better dynamic performances and robustness [25]. In the past several years, various 

fractional-order controllers have been developed [38-42]. In the previous analyzis we ob-

tained the areas where the stochastic P-bifurcation occurs in system (3), which can make the 

system switch between mono-stable and bi-stable states by selecting the corresponding un-

folding parameters. This could provide theoretical guidance for the analysis and design of the 

fractional order controllers. 

 

Figure 1. Transition set curves  
(taking p and D as unfolding parameters) 
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Figure 2. The PDF of p(a) (taking p and D as the 
unfolding parameters); (a) parameter (p, D) in area 
1 of fig. 1, p = 0.5, D = 0.001, (b) parameter (p, D) in 
area 2 of fig. 1, p = 0.6, D = 0.004, and (c) parameter 

(p, D) in area 3 of fig. 1, p = 0.3, D = 0.008 

 

Conclusion 

In this paper, the stochastic P-bifurcation of a modified fractional and bistable Van 

der pol system subjected to additive colored noise excitation is investigated. Based on the 

equivalent principle to make the mean square error minimum, the original system can be 

transformed into an equivalent integer-order system, and we obtained the system amplitude’s 

stationary PDF by utilizing the stochastic averaging method. Further, the critical parametric 

conditions for the system’s stochastic P-bifurcation behavior are obtained using the singulari-

ty theory, which can provide the theoretical guidance for system design. The consistency be-

tween the numerical results obtained by Monte-Carlo simulation and the analytical results can 

also verify the theoretical analysis above. It shows that the fractional order p and noise inten-

sity D can both arise the stochastic P-bifurcation of the system, and the number of peaks of 

the system’s stationary PDF curves p(a) can vary from one to two by selecting the appropriate 

unfolding parameters. 
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