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The cement industry has consistently consumed large amounts of coal and 

electricity resources. Optimizing energy scheduling and production process 

control can typically save energy and improve production efficiency. 

Therefore, the prediction of energy consumption holds great significance in 

the cement industry and other energy-intensive sectors. However, predicting 

energy costs is challenging due to multiple production factors, variable 

coupling, and time lags. In this research, we proposed the use of a dual-

channel temporal convolution neural(TCN) network to forecast coal and 

electricity consumption in the cement calcination process for the upcoming 

production hour. Additionally, we employ the Spearman correlation 

coefficient method to select variables for the calcination system, aiming to 

reduce feature data dimensions and improve model training efficiency. To 

address parameter redundancy and mitigate the risk of overfitting, we devise 

a dual-channel structure. For comparison, we utilized various models 

including Recurrent Neural Network (RNN), Gate Recurrent Unit(GRU), 

Long Short-Term Memory(LSTM), Convolutional Neural Network(CNN), 

and Back-Propagation(BP) in prediction experiments using actual cement 

calcination process energy consumption data. The results indicated that with 

a kernel size of 13, dilation rates of [          ], and a filter size of 36, 

the TCN model achieves an accuracy of 97.65%. Relative to other models, 

the TCN model achieved a reduction of at least 40% and 24% in the Mean 

Squared Error (MSE) for coal and electricity consumption forecasts, 

respectively, meeting the expected requirements. 

Keyword: Energy consumption prediction, TCN, Cement clinker production, 
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1. Introduction 

Over a long-term, the cement manufacturing industry, as a high energy consumption industry, 

should prioritize both high-quality production and energy conservation with emission reduction. This 

includes optimizing coal and electricity consumption reduction. Predicting energy consumption in 

advance based on characteristic variables of the cement calcination process not only provides a 

reference for energy allocation to reduce consumption but also informs engineers on plant production 
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improvements. This is vital for achieving energy efficiency, emission reduction, and effective energy 

scheduling [1]. 

Neural network models are widely used in the fields of machine learning and artificial 

intelligence. Due to the diverse needs of various application scenarios, different kinds of models have 

emerged. Representative models include RNN, LSTM, GRU, BPNN, CNN, among others. BPNN is 

widely used in electric load forecasting[2] and various industrial equipment, such as centrifugal 

pump[3], motors[4] and bearings[5]. Its structure can be flexibly adjusted to model complex nonlinear 

relationships. RNN excels in sequential prediction tasks, applicable to natural language processing[6], 

stock price forecasting[7], and speech recognition[8]. Its design retains past information within its 

internal state, an essential feature for processing sequence data. LSTM, a variant of RNN, addresses 

the issues of vanishing or exploding gradients with its unique structure[9], making it suitable for 

industrial energy consumption forecasting[10], disaster monitoring[11], and traffic prediction[12]. 

GRU, a streamlined version of RNN, offers a simpler structure and more efficient computations than 

LSTM, holding promising applications in fault diagnosis[13] and automatic control[14]. CNN, one of 

the most popular neural network models, is primarily used in visual recognition[15], including 

autonomous driving[16] and the medical field[17], specializing in capturing local features through 

convolutional computations. 

The cement calcination process contains various physicochemical reactions as well as process 

variables [18]. Physicochemical reactions such as carbonate decomposition, fuel combustion, and 

solid-phase raw material reactions occur. The neural network structure proposed in this study can 

efficiently learn the intrinsic relationships between these physicochemical processes and energy 

consumption [19], thus enhancing computational efficiency [20]. Process variables like raw material 

feed rate, secondary air temperature, and outlet temperature of the decomposition furnace are essential. 

Spearman's correlation coefficient method is used to eliminate redundant and low-correlation features, 

thereby improving model robustness. 

In the domain of thermal engineering, artificial neural networks (ANNs) have demonstrated 

significant predictive capabilities. Kocyigit enhanced the accuracy of predicting the overall heat 

transfer coefficient in coaxial double-pipe heat exchangers, by integrating curve fitting with ANN 

techniques[21]. This advancement illustrates that ANNs can be effectively utilized in optimizing and 

simulating thermal efficiency, offering innovative approaches and methodologies for industrial 

applications.  

In cement manufacturing, the temperature of the rotary kiln firing zone significantly influences 

clinker quality. Xin Shi predicted the energy consumption of the cement clinker firing process by 

establishing a sliding window-based CNN dual-channel(SWDC-CNN) prediction model[22]. The 

results indicate that the accuracy of energy consumption prediction using this structure is 94.75%. 

Meanwhile, the TCN model employed in this study achieves an accuracy of 97.65%, suggesting that 

dilated convolution might be more effective than the sliding window technique. It is important to note 

that inappropriate window sizes may hinder predictions. For further comparison, the CNN model is 

used in this study as a benchmark against other models.  

Jinquan Zheng et al. used an improved RNN structure with an attention mechanism to model the 

rotary kiln and achieved prediction accuracy of 91.6% for the residence time in the calcination 

process, which indicates desirable results [23]. Since RNN models are better suited for processing 

short sequence data, this study considers it as a comparative model. Zhimin Liu et al. developed a 
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rotary kiln temperature prediction model based on the CNN-BILSTM-OC model by combining CNN 

and LSTM[24]. This model possesses memory functions and feature extraction capabilities, which are 

important for time series prediction. The remarkable accuracy of 99.8% highlights the importance of 

feature extraction in this context. Similarly, the TCN model enhances these predictions through its 

dilated convolutions, which also play a significant role in feature extraction.  

Gang Liu et al. integrated the spatial attention mechanism with LSTM for predicting the 

electricity consumption of cement raw mill systems. The model achieved an R
2
 prediction accuracy of 

0.908, facilitating optimal energy consumption realization over time[25]. LSTM has limitations in 

capturing essential information when dealing with highly coupled data. Therefore, in this study, LSTM 

is used as a comparative model. Ahmer Ali used BP neural networks to forecast power for waste heat 

recovery systems in cement plants[26], achieving an impressive accuracy of 99.9%. This serves as an 

alternative to thermodynamic modeling , thereby avoiding extensive computations. 

TCN, a relatively new and effective neural network architecture, combines the advantages of 

RNNs and CNNs to offer high flexibility and has been widely employed in various fields. For 

example, it achieves an error rate that is 5.27% lower than the LSTM model in energy prediction[27]. 

It also has a predictive accuracy of 94.1% in motion recognition[28]. Additionally, it has been applied 

to industrial data forecasting[29] and lifespan prediction[30]. The TCN structure excels in preventing 

gradient explosion, and its extensive receptive field effectively captures long-term dependencies. 

These characteristics make it highly suitable for the cement manufacturing industry[31].  

Whether it's RNN, LSTM, or sliding window techniques, there might be inherent structural 

issues such as exploding gradients, vanishing gradients, and insufficient memory history, particularly 

in the context of energy consumption in cement manufacturing. To address these deficiencies, the 

TCN structure can solve the problem of short memory history by increasing dilated convolutions, and 

prevent exploding and vanishing gradients through residual connections. Therefore, TCN 

demonstrates significant potential for application in cement manufacturing, suggesting that it can 

provide robust technological support for optimizing and predicting the manufacturing process, thereby 

enhancing production efficiency and stability. 

2. Analysis of cement clinker calcination system and selection of characteristic variables 

As illustrated in Fig.1, once the preparation of cement raw material is completed, it is conveyed to 

the kiln tail suspended preheater and decomposition furnace.  

 

Fig.1 Flow chart of cement clinker calcination system 
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The high-temperature material, after preheating and decomposition, enters the rotary kiln for 

calcination into clinker. After cooling by the grate cooler, the clinker is then delivered to the clinker 

storage. The fuel coal, dried and grounded by the coal mill, is stored in the form of pulverized coal in 

the pulverized coal silo and then supplied to the decomposition furnace and rotary kiln. Coal 

consumption is mainly concentrated during the calcination process of the calciner and kiln, while 

electricity consumption is mainly concentrated in the kiln’s main motor, high-temperature fan, coal 

mill, exhaust fan, and other components. 

The variation in energy costs in the cement clinker calcination system is influenced by numerous 

factor variables, which must be selected based on experience and theory. Data labels and ranges, 

including maximum, minimum, average values, and standard deviations, are shown in Table 1. It can 

be concluded that the relative dispersion of coal consumption is higher than that of electricity 

consumption, indicating that coal consumption prediction is more challenging.  

In this section, the Spearman rank correlation coefficient method is employed to validate and 

select the original feature variables. This method, a non-parametric statistical approach, calculates the 

correlation between two variables based on their ranks, reflecting the monotonic relationship between 

them. The formula is as follows[32]: 

    
    

 

 (    )
 ( )  

Where   denotes the Spearman's value, n denotes the number of samples and    denotes the 

difference between the i-th data pair rank. The range of Spearman's values range from -1 to 1, closer to 

1 (or -1) indicate a higher degree of positive (or negative) correlation.  

Table 1  Training data details 

After obtaining production data from the cement plant and removing null values and outliers,  the 

correlation coefficients between the feature variables and coal consumption, as well as power 

consumption, are calculated using Eq(1). The heatmap generated from these coefficients is shown in 

Fig.2. A feature can be chosen as an input feature to the model when the coefficient exceeds 0.2, 

indicating a certain level of correlation between the two variables. 

Input Variables maximum Minimum average standard deviation 

high-temperature fan current: 𝑋𝐸  (𝐴) 138.00 62.00 105.63 11.76 

high-temperature fan speed: 𝑋𝐸  (𝑟/𝑚𝑖 ) 915.00 741.00 864.01 35.41 

Kiln head fan current: 𝑋𝐸3 (𝐴) 2176.00 1120.00 1852.60 213.01 

Grate cooler fan average speed: 𝑋𝐸4 (𝑟/𝑚𝑖 ) 1040.00 592.00 804.73 94.71 

kiln head total voltage: 𝑋𝐸5 (𝑉) 4176.00 1632.00 3227.69 504.07 

coal mill hosts current: 𝑋𝐸  (𝐴) (A) 7.49 0.15 5.35 2.20 

raw material feeding rate: 𝑋𝐶  (𝑡/ℎ) 569.00 257.00 358.70 26.04 

Kiln head roots blower current: 𝑋𝐶  (𝐴)  30.80 14.90 22.66 2.54 

secondary air temperature: 𝑋𝐶3 (℃) 1249.00 1232.50 1240.96 3.28 

clinker production: 𝑋𝐶4 (𝑡/ℎ) 263.00 167.00 235.53 16.49 

tertiary air temperature: 𝑋𝐶5 (℃) 1200.00 869.00 987.48 45.56 

exhaust gas temperature: 𝑋𝐶  (℃) 374.00 257.00 298.26 19.76 

C5 material discharge temperature: 𝑋𝐶7 (℃) 1091.00 825.00 889.72 38.15 

decomposition furnace outlet temperature: 𝑋𝐶8 (℃) 129.10 73.39 99.60 4.11 

System electricity consumption: 𝑦𝐸(𝑘𝑤 ∙ ℎ/𝑡) 7222.00 4158.00 6260.72 605.02 

Total coal consumption of calciner and rotary kiln:𝑦𝐶  (𝑡/ℎ) 35.00 22.50 29.00 2.97 
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From Figure 2(a), it can be concluded that the fluctuation in electricity consumption most closely 

resembles that of the total kiln head voltage XE5, which includes the voltages of both the rotary kiln 

and the grate cooler. This is notable since the rotary kiln and grate cooler are the major consumers of 

electricity in actual production. Figure 2(b) shows that the secondary air temperature XC3 is closely 

associated with the fluctuation in coal consumption, with a Spearman rank correlation coefficient of 

0.9, indicating a very strong correlation. The secondary air is the air after the grate cooler cools the 

clinker. When the consumption of coal increases, the temperature of the clinker from the rotary kiln 

increases, and consequently, the temperature of the secondary air also increases. Upon comparison 

between the charts in (a) and (b), it is observed that the correlation between coal consumption and its 

features is generally lower than that between power consumption and its features. This is attributed to 

the complexity of coal consumption in the rotary kiln and decomposition furnace, where various 

variables interact, exhibiting a stronger degree of coupling compared to power consumption. The 

Spearman rank correlation coefficient is advantageous for capturing fluctuation patterns, which makes 

it particularly effective at identifying nonlinear relationships and mitigating the impact of noise on 

model performance. 

3. Construction of the TCN forecasting model 

Section 2 outlines significant challenges in predicting energy consumption of cement production. 

These challenges include complex physicochemical reactions, redundant process parameters, 

temporality, and non-linearity. The dilated convolution computation and residual block structure of the 

TCN model can effectively address these challenges. The model operates with the following inputs: 

𝑋  {  
     

    3
       }     4    ( 𝐸 

    𝐸 
      𝐶 

    𝐶 
   ) ( )  

   denotes the feature values matrix at a certain time t. The prediction matrix of the model is 

then: 

 ̃  {�̃� 
   �̃� 

   �̃�3
     �̃� }      �̃�  (�̃�𝐶

   �̃�𝐸) ( )  

�̃�  denotes the output values matrix at a certain moment 𝑡. That is, there is a function F such 

that: 

 ̃   (       3       ) ( )  

The task of the neural network model is to search for underlying patterns between 𝑋  and the true 

value   , so that the loss between the predicted value  ̃  and    is minimized to optimize the prediction 

of the model. 

               

(a) electricity variables analysis              (b) coal variables analysis 

Fig.2 Spearman correlation analysis between process variables 
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In this section, TCN is employed to construct a model for predicting the clinker burning energy 

consumption in a cement plant in Guangxi, China. As illustrated in Fig.3, the first part of the model 

involves normalizing the data, scaling the values of input variables to the range (0~1) to avoid the 

impact of data with different scales on the predictive performance of the model.  

The second part involves feeding the data into a dual-channel residual block for training. One 

channel is responsible for predicting coal consumption, while the other is dedicated to predicting 

electrical consumption. The weights of these two channels are independent of each other. The third 

part involves feeding the data into the fully connected layer for predicting coal consumption and 

electricity consumption. The MSE between the predicted results and the actual production record 

values is calculated, and the weights are adjusted using the Adam algorithm. 

 

Fig.3 Dual-channel TCN model structure 

3.1. Residual connection 

The presence of residual connections helps address the issue of model degradation as the depth 

increases by introducing skip connections that allow data to bypass one or more layers, effectively 

alleviating the problems of vanishing and exploding gradients. As demonstrated in Fig.4, where the 

outcome of the h-th residual module  (𝑋(   )), is summed with the input 𝑋(   ) to obtain the new 

input 𝑋( )[32]: 

𝑋( )   ( (𝑋(   ))  𝑋(   )) ( )  

   is an activation function. 

The residual module is an important part of the TCN network, composed of stacked layers 

including dilated convolutional layers, Weight Norm layers, ReLU layers, and Dropout layers. As 

illustrated in Fig.5, dilated convolution increases the receptive field by inserting gaps in the 

convolutional kernel, where the gap size is the dilation rate. The dilation rate is represented as   

[          ]  [          ], and the formula for dilated convolution on the sequence element   is 

as follows[30, 32]: 

 ( )  (𝑋   
  )( )  ∑  (𝑖)  𝑋     

   

   

 ( )  

 

Fig.5 The structure of dilation convolution 

 

Fig. 4 The structure of Residual block 
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where  𝑋 denotes the input sequence, filter   (          ) ,    means filter size,    means 

dilation factor, and    ∙ 𝑖 denotes the past direction. 

As dilation factor grows, the range of the receptive field expands, and the model is able to get a 

longer history of input data. The size of the receptive field 𝑟 was calculated as: 

𝑟       (     ) ( )  

where    denotes the number of layers, and the appropriate dilation rate and convolution kernel 

size are selected depending on the duration of the timeseries and the actual need during the modeling 

process. 

The Weight Norm layer is employed in the residual module for normalizing the weights of the 

convolution filter, expressed as: 

𝑤  
 

‖ ‖
  ( )  

where 𝑤 denotes the weight magnitude,   denotes the multidimensional vector, and   denotes 

the scalar. The activation layer utilizes the ReLU function, a non-linear activation function with the 

expression[22]: 

    ( ( ))     (     ( )) ( )  

Finally, the dropout layer is employed to reduce overfitting by randomly setting the outputs of 

neurons to zero (dropout) during training, calculated as: 

 ( )   (𝑤 
( )

∙ 𝑟(   ) (   )    
( )

) (  )  

where (l-1)-th  𝑟(   )   𝑟     𝑖( ) represents a binary vector generated from a Bernoulli 

distribution with dropout rate p 

3.2.  Parameter adjustment algorithm 

In neural network computations, various optimization algorithms including gradient descent, 

momentum, Adagrad, root mean square propagation(RMSprop), Nesterov Accelerated Gradient, and 

Adam are utilized. These algorithms play a crucial role during training as they determine how the 

model learns and improves from its training data. In subsequent experiments, the Adam algorithm has 

proven to be effective. Therefore, in this article, the Adam algorithm is chosen to automatically adjust 

the model weights. For the weights of the model 𝑤 , the formula for calculating the gradient at each 

iteration step 𝑡 is given by[19]: 

    (𝑤 ) (  )  

Then, first-order moment estimates 𝑚  and the second-order moment estimate    of the gradient 

are calculated using equation[19]: 

𝑚    𝑚    (      )             (      )  
  (  )  

Correction for bias in the first-order moment estimate and second-order moment estimate is 

performed as follows[19]: 

�̂�  
𝑚 

    
   ̂  

  

    
  (  )  

Finally, the new model weights were obtained by the weight update formula[19]:  

𝑤    𝑤   
�̂� 

√ ̂   
 (  )  

where   is the learning rate, usually      8                [19]. 
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4. Prediction and outcome analysis 

In this section, the data was preprocessed and neural networks were trained, adjusting various 

important parameters of the model. The objective was to set the simultaneous prediction of coal 

consumption and electricity consumption as the predicted values for the next hour. A dual-channel 

TCN model was compared with five classical neural network models to verify the superiority of this 

approach. 

4.1. Data pretreatment 

The data collected for this study are the production data from March to June of a cement factory 

in Guangxi, China. The sensors recorded the data per hour, resulting in a total of 2760 pieces of 

production data. These data need to be normalized due to the different magnitudes of the data 

variables. Normalization was done using equation[32]: 

   
      

         
 (  )  

where    denotes the original value of the variable,    denotes the normalized value of the 

variable,      denotes the maximum value of the input variables, and      denotes the minimum 

value of the input variables. 

Evaluating the performance of the prediction model is primarily done by calculating the error 

between forecasted values and true values. In this study, the selected calculation error functions 

include MSE, root mean square error(RMSE), mean absolute percentage error(MAPE), mean absolute 

error(MAE), with the following formulas[30]: 
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where �̃�  denotes the predicted value, 𝑦  denotes the true value, and n denotes the sample size.  

4.2. Parameter and structural adjustment experiments of TCN 

According to the loss curves of the TCN model under different gradient descent strategies as 

shown in Fig.6, it can be seen that the model's convergence speed is relatively slow under the 

stochastic gradient descent(SGD) strategy. However, under the Adam and RMSprop strategies, the 

descent basically stops after 350 iterations, indicating that the model can converge faster under these 

strategies. In the prediction of electricity consumption required for the cement clinker calcination 

process, the fluctuation of the loss curve of RMSprop algorithm is more obvious compared to the 

Adam algorithm, which may hinder the model's ability to find a better solution. Therefore, the Adam 

algorithm is more suitable for the TCN model. In the prediction of coal consumption, the descent 

speed of RMSprop algorithm is faster than Adam at the beginning. However, after multiple iterations, 

the TCN model using the Adam algorithm achieves a lower loss value, indicating that the Adam 

algorithm can adapt better to the update of TCN model parameters.  

From the process of model establishment in Section Three, it is evident that the convolutional 

kernel size, dilation rate, filters and training batch size are important parameters affecting the model's 
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predictive performance. As shown in Table 2, we selected different parameters for model training, and 

different codes represent different parameter configurations. We tested the model's predictive MSE 

error that calculated according to Eq(16) by varying a single variable, and the final results are shown 

in Figures 7 and 8. The model's prediction error for different convolutional kernels first decreases and 

then increases, it is evident that the overall error of the model is lowest when the convolutional kernel 

is set to 13.  

The dilation rate determines the model's receptive field. As shown in the graph, the overall error 

of the model is minimized when the dilation rate is set to [2
1
, 2

2
, ..., 2

6
]. The filter size directly affects 

the number of parameters in the convolutional layer. As shown in the graph, the overall model error 

decreases and then increases with an increase in filter size, with the minimum error achieved when the 

filter size is 36. 

Table 2  different parameters of TCN model 

The batch size is an important hyperparameter during the training process. We set the batch size 

to different proportions of the training set. As shown in the graph, the overall model error increases 

with an increase in batch size, with the minimum error achieved when the batch size is 1. Therefore, 

the final chosen configuration includes a convolutional kernel size of 13, dilation rate of [2
1
, 2

2
, ..., 2

6
], 

filter size of 36, and a batch size of 1. 

4.3. Comparing the predictions of the TCN model with other mode 

In this section, the practical prediction accuracy of BPNN, LSTM, GRU, RNN, CNN, and TCN is 

assessed, alongside simulating the application scenarios of different models in real production 

processes. Prediction experiments are conducted using a test set separate from the training data. The 

prediction error of coal consumption by different models, calculated according to Eq(16) and Eq(17), 

is shown in Table 3, and the comparison of real and predicted values is presented in Fig.9. It can be 

clearly observed that the CNN model exhibits a significant bias in predicting coal consumption, 

indicating overfitting, and leading to a significant prediction error on the test set. 

 

Parameters\code 
1 2 3 4 5 

kernel size 11 12 13 14 15 

dilation [2,4,8,16] [2,4,8,16,32] [2
1
,2

2
, ... ,2

6
] [2

1
,2

2
, ... ,2

7
] [2

1
,2

2
, ... ,2

8
] 

filter size 18 36 54 72 90 

batch rate 0.2 0.4 0.6 0.8 1.0 

Fig.8 MSE under various 

conditions of electricity 

channel 

Fig.7 MSE under various 

conditions of coal channel 

Fig6. TCN training loss 

with different strategy 
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Table 3  Test errors of coal consumption 

In contrast, the LSTM, GRU, RNN, and BPNN models show more satisfactory prediction results, 

consistent with the actual coal consumption values within a certain error allowance. As shown in 

Figure 9 (f), TCN performs better in the latter part of the samples, while the other models exhibit more 

noticeable errors. This is attributed to the lack of generalization ability when the models encounter 

unseen data. This indicates that the TCN model exhibit superior performance in capturing sequence 

features of coal consumption curves. 

While BPNN, GRU, RNN, and LSTM models show significant results in coal consumption 

prediction, however, as indicated in Table 4 and Fig.10, they perform less satisfactorily in electricity 

consumption prediction with dual-channel structure. 

Table 4  Test errors of electricity consumption 

Conversely, the CNN model performs poorly in coal consumption prediction, but shows 

satisfactory accuracy in electricity consumption prediction. This suggests a tendency for models to 

favor the prediction results of a specific single channel in dual-channel synchronous prediction tasks.  

model parameter MSE RMSE MAPE MAE 

CNN k1 = 5, k2 = 10 6.16 2.48 7% 2.05 

LSTM hidden size = 13 3.10 1.76 5% 1.41 

GRU hidden size = 13 2.48 1.58 4% 1.25 

RNN hidden size = 13 2.47 1.57 4% 1.27 

BPNN hidden size = 13 2.21 1.49 4% 1.23 

TCN dilation = [1,2,4,8,16,32,64], kernel size=13 1.32 1.15 3% 0.92 

model parameter MSE RMSE MAPE MAE 

BPNN hidden size = 13 45453.8 213.20 2.5% 172.38 

GRU hidden size = 13 38587.9 196.40 2.3% 154.69 

RNN hidden size = 13 32250.0 179.58 2.0% 136.45 

CNN k1 = 5, k2 = 10 31646.6 177.90 2.0% 137.59 

LSTM hidden size = 13 31140.2 176.47 2.0% 134.45 

TCN dilation=[1,2,4,8,16,32,64], 

kernel size=13 

23792.6 154.25 1.7% 114.12 

 

(a) Test outcome of CNN            (b) Test outcome of LSTM      (c) Test outcome of GRU 

 

(d) Test outcome of RNN         (e) Test outcome of BPNN     (f) Test outcome of TCN 

Fig.9 Comparison of coal consumption prediction results of different models 
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As shown in Fig.10 (a) (b) (c) (e), during the electricity consumption prediction process, BPNN, 

GRU, RNN, and LSTM perform poorly when the electricity consumption exceeds 6500 𝑘  ℎ/𝑡, 

exhibiting significant underfitting. As illustrated in Fig.10 (d)(f), the TCN model with longer memory 

outperforms the slightly better performing CNN model in predicting accuracy between electricity 

consumption values of 6500 𝑘  ℎ/𝑡 and 7000 𝑘  ℎ/𝑡.  

 

Unlike the previous models, the TCN model demonstrates excellent performance in dual-channel 

synchronous prediction tasks, bridging this limitation. Its dilated convolutional structure can capture 

long-term dependencies in time series, while the use of residual block structures enhances the 

accuracy of the model, leading to a well-balanced performance in dual-channel forecasting.  

As shown in Tables 3 and 4, this paper employs MSE, RMSE, MAE, and MAPE as the testing 

error evaluation metrics. For the TCN model, the coal consumption prediction errors are 1.32,1.15,3%, 

and 0.92, compared to traditional prediction models, the MSE of TCN has decreased by a minimum of 

40% and a maximum of 79% while the electricity consumption prediction errors are 23792.6, 

154.25, 1.7%, and 114.12, compared to traditional prediction models, the MSE of TCN has decreased 

by a minimum of 24% and a maximum of 48%. This confirms the TCN model's capability to extract 

time-series features of the power and coal consumption data in the cement clinker manufacturing 

process. 

5. Conclusions 

1) A synchronous forecasting model for coal and electricity consumption using TCN is proposed. 

We found that the TCN achieves the best prediction performance in this study when the kernel size is 

13, the dilation layers are [2, ..., 16], and the number of filters is 36. The model was trained using 

actual production data, saved for application in the cement calcination system. Additionally, the model 

autonomously preprocesses production data, predict energy consumed for the next hour, and provide 

 

(a) Test outcome of BPNN         (b) Test outcome of GRU           (c) Test outcome of RNN                           

 

(d) Test outcome of CNN         (e) Test outcome of LSTM           (f) Test outcome of TCN 

Fig.10 Comparison of electricity consumption prediction results of different models 
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feedback to on-site engineers or the factory's automatic control system. This model has the potential to 

offer effective and scientifically sound recommendations for cement production control and resource 

scheduling. 

2) In this study, the Spearman correlation coefficient method was used to select the engineering 

variables for the prediction process. Among these, the variable with the highest correlation to coal 

consumption was the secondary air temperature, with a correlation coefficient of 0.9, while the 

variable most correlated with power consumption was the total voltage at the kiln head, with a 

correlation coefficient of 0.85. This approach aimed to enhance prediction precision by reducing 

model parameter redundancy and improving the nonlinear fit of the TCN to the nonlinearities between 

the energy consumption of the cement clinker calcination system and its influencing factors. 

3) The proposed model adopts a dilated convolutional structure design, facilitating a longer retain 

of time series data and enabling it to consider a broader data spectrum during predictions and thus 

enhancing accuracy. In predicting coal and power consumption, the dual-channel TCN structure 

achieves MAPE of just 3% and 1.7%, respectively, excellently fulfilling the precision requirements for 

energy consumption forecasts. 

4) The TCN is a novel and effective model designed specifically for time-series data, making it 

highly suitable for use in the cement manufacturing industry. It can be utilized to predict other key 

indicators within the industry, such as the exit temperature of the decomposer and the discharge 

temperature of the five-stage cyclone. Additionally, there is potential for TCN to be combined with 

other types of neural network models to develop a new model with a broader application range and 

enhanced performance. We will continue our research based on these ideas. 

Nomenclature 

  - Spearman correlation value      n - number of samples 

  
  - difference between the 𝑖  𝑡ℎ data pair rank  X - input matrix 

   - feature values matrix at a certain time    ̃  - prediction matrix of the model 

�̃�  - output values matrix at a certain time      - true value matrix 

  - activation function       F - function 

r - receptive field        𝑤 - weight magnitude 

  - multidimensional vector         - scalar 

p - dropout rate           ( ) - output of l layer level 

   - gradient at each iteration step     𝑚  - first-order moment estimate 

   - second-order moment estimate                - constant value 

  - learning rate           - normalized value of the variable 

Subscripts and superscripts 

max - maximum         E - electricity 

C  - coal          t - time step 

h - residual block sequence number     K - filter size 

d - dilation factor        min - minimum 

i - index 

Acronyms 

RNN  - recurrent neural network   GRU - gate recurrent unit 
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LSTM  - long short-term memory   CNN - convolutional neural network 

BP   - back-propagation     TCN - temporal convolution network 

MSE  - mean squared error    ANN - artificial neural network 

RMSE  - root mean square error   MAPE   - mean absolute percentage error 

MAE  - mean absolute error    SGD - stochastic gradient descent 

RMSprop - root mean square propagation 
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