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A damping system always results in energy consumption. This paper studies an 
exponentially damped oscillator with historical memory for a viscoelastic damper 
structure, its stability under an initial response is analyzed analytically and veri-
fied numerically.  
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Introduction 

With the extremely fast development of materials science, more and more new mate-

rials, including bionic materials, polymer materials, polymer viscoelastic materials, nanoma-

terials, piezoelectric materials, 3-D printed materials and metamaterials [1-5], have been ex-

tensively applied to vibration-related fields, especially for vibrations absorption and noise 

control [6], improvement of safety and reliability of aircraft, ship control panels, gyro instru-

ments and other mechanical equipment [7], and energy harvesting devices [8].  

The traditional approach to the viscous damping model is assumed that the damping 

force is proportional to the relative velocity of the moving subject. This mathematical descrip-

tion method cannot reflect the actual structural characteristics and complex damping energy 

dissipation characteristics of materials, except for the convenience of calculation, so a new 

mathematical description is much needed.  

Liang and Wang [9] suggested a fractal viscoelastic model, where the two-scale 

fractal theory [10, 11] was adopted. In recent years, more and more attention was paid to the 

integral constitutive model, that is, the convolutional non-viscously damped model [12-14]. 

This model has many advantages in the memory characteristics and the time-delay property. 

Compared with the viscous damping model, it can better reflect the rheological characteristics 

of materials, and can also explain the characteristics of structural damping mechanism in a 

physical sense. However, because the damping force contains an integral term, it changes the 

original linear property and brings difficulties to the analysis and calculation. 

The research on the convolutional non-viscously damped oscillators mainly focus-

es on two types: one is fractional oscillators [15], in which the viscoelastic kernel function is 

expressed by the power law function or Mittag-Leffler function. The other is an exponen-
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tially damped oscillator whose damping force is represented by an exponentially decayed 

memory kernel [14, 16]. They can all be expressed as convolution integrals. The equations 

of motion established by an integral constitutive model are a group of coupled second-order 

integral differential equations. The existence of an integral term makes the vibration analy-

sis and control design more complicated than that of the classical design. 

Adhikari and Woodhouse [13] systematically studied the exponentially damped 

model, including the dynamics of exponentially damped single degree of freedom and multi 

degree of freedom systems. Li et al. [16] studied the sensitivity of dynamic analysis of line-

ar non-viscously damped systems. Shen et al. [17] considered the exponentially damped 

system and used Taylor expansion formula to eliminate the integral term, so as to conduct 

time history analysis of the system. In [18], the exponentially damped system was studied, 

and the method to determine the parameters of the specific material exponentially damped 

model was given, which was verified by experiments. Lazaro and Perez-Aparicio [19] pro-

posed a new method to calculate the eigenvalue of linear viscoelastic vibrator. The exponen-

tially damped model, fractional derivative damping model and viscous model were taken as 

examples to verify the method. Guedria and Smaoui [20] proposed a new method to simul-

taneously calculate the eigenvalue derivatives of left and right eigenvectors of exponentially 

damped systems and their related derivatives. A large number of scholars have conducted 

extensive research on the exponentially damped system [21-23]. However, the research on 

the initial response of the exponentially damped vibrator is very rare and preliminary. 

The stability of initial response of exponentially damped oscillators is discussed in 

this paper. Unlike classical viscous damped oscillators, the equation of motion of this class 

of oscillators is a set of coupled second-order Volterra integral differential equations. This 

paper deals with the initial value problem of integral differential equations. The determina-

tion of the initial displacement and initial velocity of the motion equation of exponentially 

damped oscillators with a history is not sufficient to understand its dynamic behavior. The 

initial condition should contain the time history of the velocity of vibration motion [24]. In 

this way, the initial response of the exponentially damped oscillators can be obtained accu-

rately. In this paper, it is proved theoretically that the initial response has no effect on the 

stability of the exponentially damped oscillators, and through numerical simulation, the ef-

fect of the initial response on the exponentially damped oscillators gradually disappears. 

Initialization of convolutional  

non-viscously damped oscillators 

The integral constitutive relation of viscoelastic materials is expressed by Volterra 

type integro-differential equation: 

 ( ) ( ) ( )d

t

t G t    


   (1) 

where σ(t) is the stress, ε(t) – the strain, and G(t) – the stress relaxation function. The lower 

end of the integral is –¥, because the stress of viscoelastic materials depends on all the time 

histories of strain. 

Volterra’s integro-differential equation can model many practical problems, for ex-

ample, population dynamics [25], and the homotopy perturbation method has been proved to 

be effective to solve such problems [26].  
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Figure 1 shows a single DoF oscillator with a convolutional non-viscously damper. 

The vibration equation of the exponentially damped oscillator is: 

 ( ) ( ) ( )d ( ) ( )

t

mx t c G t x kx t f t  


     (2) 

where m is the mass, k – the stiffness, c – the damping coefficient, and f(t) – the external force 

acting on the system. 

The integral term in eq. (2) makes the dynamic 

model different from the classical model. It contains 

not only the information of vibration displacement 

and velocity, but also the time history of velocity. 

This means that, unlike viscous damping systems, 

instantaneous displacements and velocities are not 

sufficient to predict the dynamic behavior of the sys-

tem. The motion time history should be added to the 

initial condition to completely determine the dynam-

ics of the convolutional non-viscously damped oscil-

lators. Therefore, the dynamic equation with past his- 

tory is described: 

 0 0

( ) ( ) ( )d ( ) ( ), 0

(0) , (0)

( ) ( ), < 0

t

t

mx t c G t x kx t f t t

x x x v

x t v t t

  


    

 

  



  (3) 

where t = 0 is the initial time, and the lower end of the integral t = –¥ is the beginning time 

of the vibration. In fact, it is more reasonable to set the start time to t = –a, which means that 

the system is in a static state before t = –a. 

In order to better represent the historical memory of vibrator dynamics, the integral 

term in eq. (3) can be divided into two parts: 

 

0

0

( ) ( )d ( ) ( )d ( ) ( )d

t t

a a

G t x G t x G t x        
 

        (4) 

The first part on the right of the above equation describes the historical effect of his-

torical motion on system dynamics, expressed as y(t), then: 

 

0 0

( ) ( ) ( )d ( ) ( )d

a a

t G t x G t ν      
 

       (5) 

where y(t) describes the historical effect of vibration, which affects the behavior of the dy-

namic system after the initial time t = 0. Equation (3) can be rewritten: 

 
0

0 0

( ) ( ) ( )d ( ) ( ) ( ),  0

(0) , (0)

t

mx t c G t x kx t f t c t t

x x x v

        

 

   (6) 

 

Figure 1. Equivalent mechanical model of 
convolutional non-viscously damped 
oscillator 
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Initial response of  

exponentially damped oscillators 

Now we are ready to study the initial response of an exponentially damped oscillator 

with historical effect, which describes the historical effect of past vibration motion. For this 

purpose, we will ignore the external force f(t) and set it to zero. In this case, the equation of 

motion with initial conditions is: 

 
0

0 0

( ) ( ) ( )d ( ) ( ), 0

(0) , (0)

t

mx t c G t x kx t c t t

x x x v

        

 

   (7) 

where ( ) e , 0.tG t     

By applying Laplace transformation [27] to both sides of eq. (7), it can be obtained: 

 2
0 0 0[ ( ) ] ( ) ( ) ( )

s
m s x s sx v c x s x kx s c s

s s

 


 

 
         

  (8) 

where ( )x s  is the Laplace transform of x(t) and ( )s – the Laplace transform of y(t). Then 

eq. (8) is transformed into: 

 
2

0 0 0( ) ( )
c s c

ms k x s c s msx x mv
s s

 


 

 
       

  
  (9) 

Let's call it: 

 2( )
c s

d s ms k
s




  


 and  

1

( )
h s

d s
  

From eq. (9), the solution of ( )x s  can be written: 

 0 0 0

( )
( ) ( ) ( ) ( ) ( )

h s
x s ch s s mx sh s c x mv h s

s
 


    


 (10) 

We perform inverse Laplace transform on eq. (10), and we can get: 

 0 0 0

0 0

( ) ( ) ( )d ( ) ( )e d ( )

t t

x t c h t mx h t c x h t mv h t                (11) 

where h(t) is the inverse Laplace transform of ( ).h s  

Next, we determine the expression for h(t), then we can get the initialization re-

sponse function of the oscillator. Since ( )d s  is zero at s = sj, j = 1, 2, 3 [18], we can get: 

 1 2 3, ,s i s i s             (12) 

where , , 0.     

In addition, ( )h s  can be expressed in the form of its residue in the form: 

 
3

1

( )=
j

jj

R
h s

s s 
  
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where Rj is the residue, which can be calculated: 

2

1 1 1
Res ( ) lim ( ) ( )

( ) ( )
lim |

lim

jj

j

j

j j
s ss s

s s
s sj

j

s s
j

R h s s s h s
c s d s d s

ms k
s s s s

s s












     


 
  



 

Therefore, by applying the Laplace transformation of ( ),h s  h(t) can be obtained: 

 
3

1

1

( ) [ ( )]= e js t

j

j

h t L h s R



   (13) 

By substituting eq. (13) into eq. (11), the initial response of the exponentially 

damped oscillator is obtained. It represents the historical effect of motion from t = –a: 

3 31 2 1 2( )( ) ( )
1 2 3 0 1 1 2 2 3 3

0

( ) e e e ( )d ( e e e )

t
s t s ts t s t s t s tx t c R R R mx R s R s R s

                

 3 31 2 1 2( )( ) ( )
0 1 2 3 0 1 2 3

0

e e e e d ( e e e )

t
s t s ts t s t s t s tc x R R R mv R R R

              (14) 

where 1 2 3, , , , , 0.s i s i s                 

Stability of initialization response 

Previous section illustrates the influence of past motion history on the initial condi-

tion and dynamic response. In this section, we continue to discuss the influence of historical 

effects on the stability of the initial response of the exponentially damped oscillator. Stability 

or instability plays an important role in vibration engineering, especially the pull-in instability 

of micro-electromechanical system [28-32]. Here we will show that the past motion history 

does not affect the stability of the initial response of the oscillator over time. 

Theoretical stability analysis 

As can be seen from eq. (14), the initial response consists of four parts: 

3 31 2 1 2( )( ) ( )
1 2 3 0 1 1 2 2 3 3

0

( ) e e e ( )d ( e e e )

t
s t s ts t s t s t s tx t c R R R mx R s R s R s

                

 3 31 2 1 2( )( ) ( )
0 1 2 3 0 1 2 3

0

e e e e d ( e e e )

t
s t s ts t s t s t s tc x R R R mv R R R

              (15) 

As can be seen from eq. (15), when ,t   we can get 1e 0,
s t
  2e 0,

s t
  

3e 0,
s t
  e 0,t   so the last three parts on the right of eq. (15) gradually approach to zero 

with the increase of time. Now let's prove that the same is true of the first part on the right of 

eq. (15). 

By substituting eq. (5) into the first term of eq. (15), we can get: 

 31 2 ( )( ) ( )
1 2 3

0 0 0 0

( ) ( )d e ( )d e ( )d e ( )d

t t t t
s ts t s tc h t c R c R c R

              
          (16) 
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By substituting eq. (12) into eq. (16), we can get: 

 
0

( )( ) ( )( ) ( )
1 2 3

0 0 0

( ) ( )d

e ( )d e ( )d e ( )d

t

t t t
i t i t t

c h t

c R c R c R       

   

               

  

    



  

 

 ( ) ( )
1 2 3 1 2

0 0

( + ) e cos ( ) ( )d e ( )d

t t
t tc R R t cR I I                     (17)

 

Let's call that: 

 ( )
1 1 2

0

( + ) e cos ( ) ( )d

t
tI c R R t            (18) 

 ( )
2 3

0

e ( )d

t
tI cR           (19) 

By substituting eq. (5) into eq. (18), we can get: 

 
( )

1 1 2

0

= ( + ) e cos ( ) ( )d

t
tI c R R t           

 

0
( )

1 2 1 1 1

0

= ( + ) e cos ( )d ( ) ( )d

t
t

a

c R R t G v         



    (20) 

Assume that the response speed before the initial time is bounded and reasonable, 

namely: 

  ( ) , ,0v t M t a    

Note that cos( ) 1,t   it can be obtained from eq. (20): 

 

0
( )

1 1 2 1 1

0

( + ) e d ( )d

t
t

a

I c R R M G      



     (21) 

Substituting ( ) e tG t    into eq. (21), we can get: 

 
( ) ( )

1 1 2 1 2

0 0

( + ) (1 e ) e d ( + ) (1 e )e e d

t t
a t a tI c R R M c R R M                      

 1 2( + ) (1 e )
e e

a
t tc R R M 

 

 


 

 


 (22) 
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Because of , 0,    it is obvious that: 

 1lim 0
t

I


   (23) 

By substituting eq. (5) into eq. (19), we can get: 

 

0
( ) ( ) ( )

2 3 3 1 1 1

0 0 0

( ) ( )
3 3

0 0

= e ( )d = e d e ( )d ( ) ( )d

(1 e ) e d (1 e )e e d

t t t
t t t

a

t t
a t a t t

I cR cR G v

McR McR

     

        

         

 

     



      

 

    

   

 

 

 3(1 e )
e e

a
t tMcR 

 

 


 

 


 (24) 

Because of , 0,    it is obvious that: 

 2lim 0
t

I


   (25) 

So far, we have shown that:  

1 2lim 0 and lim 0
t t

I I
 

   

which means that the first term of eq. (14) also gradually decreases to zero over time, i.e.: 

 

0

( ) ( )d 0, when

t

c h t t        

Obviously, we get that the last three terms of eq. (14) also gradually decrease to zero 

over time. Therefore, the solution of the equation of motion in eq. (14) converges to zero, i.e.: 

 ( ) 0, whenx t t    (26) 

In other words, the initial response of an exponentially damped oscillator will gradu-

ally decay with time until it reaches stability, this is called as the pull-down stability in [33].  

In practical applications, it reveals the fact that the historical response of past motion 

does not affect the stability of such systems. 

Numerical simulation 

As the exponential damping model reflects the memory of mechanical properties of 

viscoelastic materials, we conduct numerical simulation on the initial response of the expo-

nential damping oscillator to verify the stability of the initial response of such systems. 

Assume the mass of oscillator m = 5 kg, stiffness k = 500 N/s, damping coefficient  

c = 40 Ns/m, other parameters are m = 5, a = 4 seconds. 

By introducing the following new variables: 

 1 ,x x 2 ,x x ( )
3

0

e ( )d

t
tx x       



Xiu, G., et al.: Stability of Initial Response of Exponentially Damped Oscillators 
2186 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2179-2188 

Equation (7) can be converted into: 

 

1 2

2 1 3

3 2 3

( )

x x

k c c
x x x t

m m m

x x x








   

 

  (27) 

The vibration motion in the time period [ ,0]a  is specified by the following two 

specific historical functions: 

 1( ) 0.5cos5 ,v t t 2( ) sin5v t t  

According to eq. (5), the initialization functions are calculated: 

 1( ) 0.25e ,tt   2( ) 0.5e tt     

The initial conditions of eq. (27) are, respectively: 

(0.5 0 0) , (0 5 0)  

Figure 2 shows the initial responses of exponentially damped oscillators with differ-

ent historical responses. It can be clearly seen from the simulation diagrams that the exponen-

tially damped oscillator adopts four specific historical functions, respectively. After the initial 

time, the initial response gradually weakens until it reaches a stable state. Therefore, we can 

draw a conclusion that although the past motion history is different, the initial response of the 

oscillator from the initial time always decays gradually with the increase of time, and finally 

reaches stability. The numerical simulation results verify the stability of the initial response of 

the oscillator. 

 

Figure 2. Initialization response with past history; (a) v1 = 0.5cos5t, (b) v2 = sin5t 

Conclusion 

In this paper, the stability of the initial response of an exponentially damped oscilla-

tor is proved. Both theoretical analysis and numerical simulation show that under different vi-

bration history conditions, the initial response of such a system decreases gradually with the 

increase of time until it reaches a stable state. This means that while past movements affect 
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the dynamical behavior of these systems, they have no effect on stability. This phenomenon 

reveals the fact that for a single degree of freedom exponentially damped oscillator without 

external force, the vibration always stops due to internal damping, regardless of the history of 

past vibration motion. 
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