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The micro-electro-mechanical system is widely used for energy harvesting and 
thermal wind sensor, its efficiency and reliability depend upon the pull-in insta-
bility. This paper studies a micro-electro-mechanical system using He-Liu [34] 
formulation for finding its frequency-amplitude relationship. The system periodic 
motion, pull-in instability and pseudo-periodic motion are discussed. This paper 
offers a new window for security monitoring of the system reliable operation.  
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Introduction 

In the last decades, the micro-electro-mechanical system (MEMS) has seen its wide 

applications in various fields such as in microdevices [1], microsensors [2, 3], microgenera-

tors [4-6], especially the applications of the MEMS systems to energy harvesting devices and 

thermal wind sensors have been caught much attention in both industry and academy. 

The primary cause for MEMS utilization is its micro construction, exquisite sensitiv-

ity, and low power consumption. However, the pull-in instability [7-9] of the system is a rela-

tively under-acknowledged issue that can lead to unreliability, so we place special emphasis 

on this. As an example, Zhang et al. [10] presented a dynamic pull-in instability using a mass-

spring system, and a sudden collapse might occur due to the interaction of kinetic and poten-

tial energy. Tian et al. [11, 12] suggested the fractal MEMS system to overcome the pull-in 

instability, He et al. [13] provides a simple method for its security monitoring in a fractal 

MEMS system. Beside the pull-in instability, some researchers also found the pull-down in-

stability in quadratic non-linear oscillators [14].  

This paper aims to the design of the MEMS micro-actuator. An electric current runs 

through a conductor, and the Biot-Savat theorem dictates that every line produces a magnetic 

field. According to Lorenz’s theorem, the wire located on the contrary end will be exposed to 

a magnetic force, an electric current creates a force, articulated: 

–––––––––––––– 
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where 7 24π10o NA  is the magnetic coefficient, i1 – the internal flow in the movable wire, 

i2 – the internal flow in the fixed wire, l – the length of the wire, R – the original distance be-

tween the movable part of the wire and the fixed wire, and x – the displacement at time of .t   

The spring system produces a non-linear restoring force: 

 3
1F kx k x   (2) 

where k is the elastic coefficient and k1 – the coefficient of the non-linear term. 

In accordance with Newton’s Second law, the governing equation of movement for 

the wire particle is expressed in the form of the following differential equation: 
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where m is the rod mass connected to the spring system, ( )x t  – the horizontal displacement at 

time .t  Taking / ,x x b ,ot t
2 / ,o k m  1 2( )/[2π( )],oK i i l b x  and 2 2

1( )/( )ok b m  , 

eq. (3) can be reduced to the following form: 
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where K is the voltage parameter of the system.  

Equation (4) is called MEMS oscillator. The singularity at x = 1 makes it much 

complex [15] and different from some well-known oscillators like the Helmholtz-Duffing os-

cillator [16], van der Pol-Duffing oscillator [17], and the spring-pendulum system [18]. When 

the excitation parameter K is beneath the threshold value K* [19-23], MEMS oscillator will 

display a periodic behavior. Upon K exceeding an established threshold, the pull-in instability 

will ensue. The following transcendental equation is obtained by simplifying the simulation 

equation for the case when 0   [22, 23]: 
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The threshold value is K* = 0.203632188... [22, 23]. If K1 < K*, the answer to eq. (4) 

is periodic. If K2 is larger than K*, eq. (4) will bring about the pull-in instability. In fact, it is 

hard to identify the threshold value and there is an uncertain area of *
1 2( , )K K K in the ap-

plication process, beyond that the system could demonstrates either periodic properties or be 

unstable [24]. 

The amplitude can be expressed in terms of the smallest positive root (0,1)Ks  of 

the function:  

 2( ) 2 ln(1 ) 0Kf s s K s       (6) 
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Through elliptic integration, the magnitude and rate of the phenomenon can be quan-

tified numerically [22]. 
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Pull-in instability  

When the initial conditions are applied, the approximate solutions are difficult to be 

obtained by some matured analytical methods, such as the variational iterative method  

[25, 26] or the homotopy perturbation method [27-33]. To solve this conundrum, we intro-

duce the following transformation: 

 ,x A u  1A  (8) 

According to eq. (4), the direction of acceleration for a linear spring sinusoidal vi-

bration is inversely related to its horizontal displacement in all its repeated motions. Let’s 

consider that the differential equations are in the broadest sense: 
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where 2 2d /du t is the acceleration and u presents displacement. The relation between frequency 

and amplitude can be expressed: 

 2 ( )P u

u
   (10) 

The function P(u) for the MEMS system can be denoted: 
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Subsequently, the criterion for evaluating the period is that P(u)/u is positive for t > 0. 

Determination of pull-in instability  

Using Taylor series, eq. (4) can be reduced to the following form: 
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We set: 
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Solving A from eq. (13), we can obtain: 

 
1 1 4

2

K
A

 
  (14) 



Zhang, Y., et al.: Applying Numerical Control to Analyze the Pull-in Stability of  … 
2174 THERMAL SCIENCE: Year 2024, Vol. 28, No. 3A, pp. 2171-2178 

Equation (4) shows that if K = 0, the single non-linear oscillator is modified to the 

Duffing oscillator and P(u) = u + εu3,which is 2( )/ 1 0.P u u u   Therefore, when ε > 0, a 

periodic solution is present. 

If the values of P(u)/u and t meet the requirement of being greater than zero, eq. (8) 

will contain a periodic solution: 
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P u

u
 0t    (15) 

For MEMS systems, the foundation of pull-in instability judgement is dependent on 

aperiodic judgement. Consequently, we can obtain the pull-in instability condition with neces-

sary conditions like this: 
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Under the previous condition, the MEMS system will be rendered unstable. By uti-

lizing Legendre polynomials, we can determine the area of pull-in instability, then integrate 

eq. (4) from zero to one, followed by incorporating a weight function 6u then we can obtain 

the result: 
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The judgment basis of pull-in instability is: 

 1

35 35

576 768
K K      (18)  

Meeting the requirements of eq. (18) guarantees the pull-in instability. As an illus-

tration ε = 1, 1 35/576 35/768 0.10633681.K    When the excitation parameter K is bigger 

than 1K , the approximate solutions that aligns accurately with the reference results. When 

K = 0.35, the pull-in instability can be forecasted, as depicted in fig. 1(c). 

 

Figure 1. The pull-in instability be depicted when choose different value K;  
(a) K = 0.2, (b) K = 0.25, and (c) K = 0.35 
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Evaluation of pull-in instability 

In this section, He-Liu [34] formulation for finding the frequency-amplitude rela-

tionship is used: 
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where λ(u) is the weight function. He-Liu [34] formulation of eq. (19) is an extension of Ji-

Huan He’s frequency formulations [35, 36], which read: 
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various modifications were also appeared in literature [37-42]. Here we reveal the formulation 

[33] is the most suitable mathematical tool to MEMS oscillators. 

By the formulation, we have: 
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We get an approximate periodic solution: 
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The amplitude can be worked out through the eq. (14), and the final approximate so-

lution is: 
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In order to select an appropriate 3( ) (1 )u u u   for the MEMS system, we set 1A
so that: 
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The essential requirements for MEMS systems which have an approximate periodic 

solution is: 

 2

2 1

15 14
K K     (24) 

Choosing different values of the excitation parameter K < K2, the approximate peri-

odic solutions corresponding to ω are in a good agreement with the reference numerical solu-

tions within a certain range. When K = 0.05, we can predict the periodic phenomenon of the 

system, as shown in fig. 2. When ε = 1 and K = 0.25, the period is calculated accordingly. 
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Figure 2. The approximate periodic solutions compare with the reference numerical solutions when 
choose different value K; (a) K = 0.05, (b) K = 0.1, and (c) K = 0.18 

When 1 2[ , ],K K K  there is an uncertain region, then MEMS may be in a state of 

periodic motion or a pull-in unstable state. There may be no obvious separation region to dis-

tinguish whether the MEMS system is in a state of periodic motion or a pull-in unstable state, 

or there may be a pseudo-pull-in unstable state. Typically, the MEMS system has cyclical mo-

tion, but after a cycle of periodic motion, the 

system will slowly becomes pull-in unstable. 

As shown in fig. 3, when S = 100,  

K = 4.6180556 are selected, the pseudo-

periodic motion becomes pull-in instability. 

Establishing P(u)/u > 0 is less challeng-

ing if P(u) is a function of eq. (9). In the event 

that P(u) is not an odd function, eq. (19) is still 

generally accurate, yet its even term will signif-

icantly influence the frequency properties of 

 
Figure 3. The pseudo-periodic motion becomes 
pull-in instability when K = 4.6180556 
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MEMS system oscillator. An odd term that is not included in eq. (9) that will cause the solu-

tion to be non-repeating, which can cause unsteadiness. As can be seen from fig. 3, when ε is 

larger, the spring potential is less stable, but when ε = 100, the energy consumed by the spring 

potential takes a longer time. 

Conclusion 

This paper shows an oscillation in the pseudo-pull-in stabilization in the periodic 

movement, but it will enter the phase of the pull-in instability gradually. With the help of 

mathematical concepts, we improve the handling method for MEMS systems. This simple ap-

proximation method quickly grasps the oscillator dynamic features and has a certain value for 

the development of MEMS devices. 
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