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The challenge for a non-linear vibration system in a fractal space is more fractal 
dimensions than frequency-amplitude relationship, the system energy consump-
tion depends upon its fractal property, so its best-case scenario is to establish a 
relationship among the fractal dimensions, frequency and amplitude. For this 
purpose, this paper studies a fractal-fractional vibration system of a mass at-
tached to a stretched elastic wire in a fractal space, and its asymptotic periodic 
property is elucidated, the effect of the fractal dimensions on the vibration system 
is discussed. This paper offers a new road to fast and reliable analysis of fractal 
oscillators with high accuracy.  
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Introduction 

Vibration systems occur everywhere, the periodic property is the focus of many 

practical applications, for examples, a plate vibration [1], energy harvesting devices [2-4], a 

nanobeam vibration [5-7] and micro-electromechanical systems [8-12]. The periodic property 

and damping characteristic are widely studied in the non-linear vibration theory, in order to 

give a best-case scenario of a damped vibration system, much effort had been paid, and new 

theories were appeared frequently, for examples, the fractional model [13, 14] and viscoelas-

tic model [15, 16].  

Vibration properties in air or water or other porous media depends upon the porosity 

and its distribution. A pendulum [17] on the Earth surface and in a microgravity environment 

[18] and in a vacuum behaves quite differently, the vacuum can be considered as a continuum 

space, where Newton’s second law can be applied to establish a governing equation, and the 

air can be considered as a fractal space, its fractal dimensions matter the vibration properties 

greatly, and it is pivotally important to tackle the fractal space. It was reported that the fractal 

dimensions affect greatly porous material mechanical property and thermal response [19-21]. 

The fractal vibration theory was raised as a promising tool to tackle the intractable 

problems. Much achievement was obtained for fractal Duffing equation [22-24] and forced 

fractal vibration systems [25, 26]. In this paper we will consider a more complex fractal vibra-

tion equation with strongly non-linearity.  

–––––––––––––– 
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Fractal vibration system  

We consider the following fractal vibration system: 
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where ϑ is the displacement, κ and λ and n – the constants, A – the amplitude, dϑ/dtα – the 

fractal derivative defined [27-30]: 
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Applications of the two-scale fractal derivative are referred in [31-35]. When 1,   

the system was studied in [36] by the variational iteration method [37, 38], it is an oscillation 

of a mass attached to the center of a stretched elastic wire [39].  

Equation (1) describes the vibrating process in a fractal space, when it vibrates in a 

vacuum 1,   the fractal dimensions can be calculated by He-Liu formulation [19], and it 

mainly depends upon the air density.  

Frequency-amplitude relationship 

In order to elucidate the best-case scenario of the fractal vibration system, we use 

He’s frequency formulation [40, 41]. Due to it simple and reliability, it can give a fact and 

profound insight into the vibrating properties, and various modifications were appeared in lit-

erature, see for examples [42-44]. He and Liu [45] gave a mathematical explanation of the 

formulation.  

To illustrate the formulation, we consider the following general fractal oscillator: 
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where f is a non-linear function, and it requires (0) 0f   and ( )/ 0.f      

The original frequency formulation reads [40, 41]: 
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Lyu, et al. [44] suggested the following modification: 
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In our work, ( )f   is: 
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When λ = 1, n = 1, we have: 
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Consequently, the approximate frequency-amplitude relationship is obtained: 
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The approximate solution is: 

 cos( )A t   (9) 

Equation (9) gives the best-case scenario of the relationship among the fractal di-

mensions, frequency and amplitude. At the initial stage when time tends to zero, the low fre-

quency property is found as discussed in [46].  

When 1,   the period is: 
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Table 1 shows the comparison of the approximate period with exact period [36, 39], 

a good agreement is observed.  

Table 1. Comparison of the approximate period with exact period when λ = 1, n = 1 

 k = 0.1 k = 0.3 

A T Tex Error percentage T Tex Error percentage 

1 6.579483268 6.537507892 0.006420699 7.324461060 7.155651996 0.023591010 

2 6.502821496 6.452446504 0.007807115 7.021439852 6.837327148 0.026927584 

25 6.287957148 6.299196556 0.001784260 6.297533546 6.331607060 0.005381495 

 k = 0.25 k = 0.65 

0.2 7.248427556 7.237568032 0.001500438 10.56565873 10.47921219 0.008249335 

3 6.700338880 6.604323916 0.014538197 7.584244452 7.243648216 0.047019985 

20 6.301688874 6.333569396 0.005033579 6.331637639 6.416892452 0.013285996 

Conclusion 

In this work, a robust strategy is proposed to unlock the relationship among the frac-

tal dimensions, frequency and amplitude by He’s frequency formulation, and it can be used as 

an illustrating example of other sophisticated applications to fractal vibration systems. The in-

vestigation reveals the low frequency property at the initial stage of the vibrating process, 

raising the promising possibility of developing fractal vibration devices for advanced applica-

tions.  
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