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A numerical study was carried out to investigate the fluid flow and heat transfer rate of nanofluid inside a
trapezoidal enclosure with a circular heated cylinder. One side of the wall was cooled at constant temperature
and the cylinder was placed in different locations inside the cavity. The finite element method was used to
obtain the approximate solutions for the governing equations with respect to its boundary conditions. The
parameters that were considered were the Marangoni number, Rayleigh number, cylinder position and solid
particle volume fraction. The results showed that the position of the cylinder influences fluid flow and heat
transfer, and that the effects of the Rayleigh and Marangoni number were significant on the strength of the
flow.
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1 Introduction

Marangoni convection is a phenomenon that has been proven to have various different applications. Some of
these include the cooling of nuclear reactors and the growth of crystals in microgravity [13]. There have been
extensive studies conducted in regard to this phenomenon with different boundary conditions and cavities
taken into consideration.

A significant number of these investigations also involve a circular cylinder being placed inside an
enclosure where it is typically heated or emits heat. Rehman et al. [11] investigated natural convection in a
trapezoidal enclosure with a circular solid placed in the centre. The bottom and right walls were uniformly
and non-uniformly heated while the left was cooled at constant temperature. It was concluded that when the
heating was uniform, heat transfer maximised at the vertical and bottom walls. In the case of heating being
non-uniform, heat transfer maximised around the circumference of the block. Bondarenko et al. [3] studied
mixed convection inside a cavity with a moving upper wall that was filled with nanofluid. The enclosure
also had a square block inside that generates heat. The findings showed that the average temperature of the
heater decreased with Reynolds number and nanoparticles concentration. Elatar et al. [4] carried out an
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investigation on natural convection inside a square cavity with a fin attached to the hot wall with cooling
taking place on the opposite side. The effectiveness of the fin was considered where its length was varied.
It was discovered that the fin effectiveness depended on its length and that at low Rayleigh number, the
efficacy was maximised. Kim et al. [7] conducted a numerical investigation on natural convection in a
square enclosure with a heated circular block positioned in the centre. All four walls were cooled at constant
temperature. They came to the conclusion that the heated block had significant effect on fluid flow and heat
transfer, especially in the upper-half region.

Oztop et al. [9] studied mixed convection inside a square cavity with one wall moving upwards and
downwards. The enclosure also housed a circular block in the middle and it was found that thermal con-
ductivity became insignificant when the diameter of the circular body was small. On the other hand, the
orientation of the moving lid played an important role in fluid flow and temperature distribution. Uddin et al.
[12] conducted a study which focused on natural convection in a quarter-circular-shaped cavity. They dis-
covered that full-bodied flow is induced for high Rayleigh number. Pourshaghaghy et al. [10] numerically
studied natural convection inside a square porous enclosure. It was discovered that there exists a critical
number of the Rayleigh number which causes the flow to become turbulent. Yildiz et al. [15] investigated
natural convection of nanofluid inside a U-shaped enclosure with a cold rib. The aspect ratio of the cavity
was varied. They concluded that heat transfer improved with vertical aspect ratio compared to horizontal.
This investigation was then extended by Asmadi et al. [2] where different thermal profiles were analysed
and hybrid nanofluid was considered instead. They concluded that constant heating provided the best heat
transfer performance compared to sinusoidal.

From the literature above, it is clear that natural convection inside enclosures of various geometries has
its advantages and shortcomings, though a number of the investigations focused more on square cavities.
The purpose of this article is to extend the problem further from Al’Aidrus et al. [1] by taking Marangoni
convection (also known as thermo-capillary convection) into consideration with a heated circular cylinder
located in different positions inside the trapezoidal cavity, as currently, there are no studies that cover this
configuration. A recent study by Hossain et al. [5] numerically investigated MHD flow within a right
trapezoidal cavity with a heated triangular obstacle that is fixed in one location whereas Khan et al. [6]
studied natural convection inside a porous trapezoidal enclosure with two cylinders. Nanoparticles were
absent and the baffles were also fixed in place. An application of this study would be in crystal formation
where the process involves a cylinder being inserted into a chamber. The trapezoid shape was considered for
this paper so as to study the fluid and heat characteristics of such an elaborate geometry.

2 Mathematical Formulation

Figure 1 shows the 2D representation of a circular cylinder placed inside a trapezoidal enclosure that is filled
with water-based nanofluid. The height and length of the cavity is assumed to be the same in this study. The
circular body is described by using the following parametric equations

x = x0 + r cos(ζ) and y = y0 + r sin(ζ) (1)

where (x0, y0) denotes the location of the circular cylinder, r is the radius and θ ∈ [0, 2π]. The right side
of the wall and the circular cylinder are cooled and heated at constant temperature where Th > Tc. The rest
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Figure 1: Two-dimensional physical model of the enclosure

of the the walls are adiabatic and Marangoni convection occurs at the top. For this 2D study, fluid flow is
laminar, steady and incompressible with viscous dissipation being absent. It is assumed that gravity acts in
the vertical downward direction. The Boussinesq approximation is used for this investigation, and density
differences are ignored except for the gravity component. This is to further simplify the equations and allow
for better computation. The nanoparticles in this investigation are assumed to be uniform in size and shape,
and so the classical model by Xuan et al. [14] is used. The governing equations based on these assumptions
can then be written as:

∂u

∂x
+
∂v

∂y
= 0, (2)

u
∂u
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∂u
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The boundary conditions are then described by

u = v = 0 at x = 0, y = 0 and
W

2
≤ x ≤W, y = −2x+ 2W, (6)

∂T

∂y
= 0 at y = 0, (7)

∂T

∂x
= 0 at x = 0, (8)

T = Th at circular cylinder , (9)

T = Tc at
W

2
≤ x ≤W, y = −2x+ 2W, (10)

µbf
∂u

∂y
= − ∂σ

∂T

∂T

∂x
at y = H. (11)
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In order to simplify the system of equations and permit better efficiency of approximating the solution, the
dimensionless governing equations are as follows

∂U

∂X
+
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∂Y
= 0, (12)
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)
, (13)
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with boundary conditions

U = V = 0 at X = 0, Y = 0 and
1

2
≤ X ≤ 1, Y = −2X + 2, (17)
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∂X
= 0 at X = 0, (18)

∂Θ

∂Y
= 0 at Y = 0 and Y = 1, (19)

Θ = 1 at the circular cylinder , (20)

Θ = 0 at
1
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using the following substitutions

X =
x

L
, Y =

y

L
, U =

uL

αf
, V =

vL
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,
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T − Tc
Th − Tc

, P =
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2
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where U and V are the dimensionless velocities, θ is the dimensionless temperature, P , pressure, Pr is the
Prandtl number,Ra is the Rayleigh number andMa is the Marangoni number. The use of solid nanoparticles
in this investigation is denoted by ϕ and its density, heat capacitance, dynamic viscosity, thermal diffusiv-
ity, thermal expansion coefficient, thermal conductivity equations are given by the equations below. The
thermophysical properties of water and aluminium oxide are taken from [1].

ρnf = (1− ϕ)ρf + ϕρs, (ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s

µnf =
µf

(1− ϕ)2.5
, αnf =

knf
(ρCp)nf

, βnf = (1− ϕ)βf + ϕβs

knf = kf
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf − ϕ(kf − ks)
.
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The local Nusselt defined at the heated circular solid is given by

Nuloc = −
knf
kf

√(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2

(23)

The average Nusselt is then computed by taking the integral of the equation above to get

Nuavg =
1

2πr

∫ 2π

0
Nuloc

∂θ

∂N
dN. (24)

2.1 Numerical Technique

Due to the unstructured nature of the geometry, specifically, the circular heat source, the finite element
method was used to approximate the solution of the governing equations with respect to the boundary condi-
tions. The method is executed using COMSOL 5.3a. This technique involves the use of the Galerkin method
where the weak form of the equations are constructed. In order to verify the accuracy of the results obtained,
the data was compared to a study conducted by Kim et al. [7] which investigated natural convection in a
square enclosure with a circular cylinder, as shown in Table 1. Furthermore, a comparison of the streamlines
and isotherms was made with a previous study by Moussaoui et al. [8], as shown in Figure 2. It can be
seen that the present results are in good agreement with the investigation. A grid independence test was
also conducted for different meshes as shown in Table 3 where Ra = 103, Ma = 103 and with the heated
cylinder positioned in the top right.

Table 1: Comparisons of Nuavg between the present study and a prior one for Pr = 0.7 and δ = 0

Ra Kim et al. [7] Present Study

103 5.011 5.024

104 5.110 5.116

105 7.752 7.781

106 14.03 14.11

Table 2: The residuals based on Nuavg for Ra = 104

Mesh Elements Nuavg Residual = |Nunew−Nuold|
Nuold

× 100%

I 1029 2.8738 0

II 1392 2.8877 0.4907

III 2139 2.9084 0.7168

IV 5382 2.9358 0.9421

V 14877 2.9563 0.6934

VI 20247 2.9569 0.0203
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Streamlines Isotherms

Present Study

Moussaoui et al. [8]

Figure 2: The validity of the numerical method was also verified by comparing the streamlines and isotherms of
the present study with that of a previous one by Moussaoui et al. [8] were compared where Pr = 0.71, Ra = 106

and W = 0.2

Table 3: The grid refinement test conducted based on the average Nusselt number for different number of
elements and vertices

Elements/Vertices 2173/1306 5464/3179 15109/8424 20356/11048

Nuavg 7.1736 7.1976 7.2162 7.2161

Time (s) 5 9 17 23

3 Results and Discussion

The parameters used in the study were Ma, the Ra, position of heated cylinder, with fixed Pr = 0.052 and
ϕ = 0.03. The parameters mentioned were chosen as the Rayleigh number will give an idea of how fluid
flow behave and typically, a value of 103 indicates that fluid flow is laminar whereas 104 suggests that the
state is transitioning from laminar to turbulent. The Marangoni number on the other hand, represents how
the surface tension gradient affects the study, whereas ϕ indicates the amount of nanoparticles present in the
base fluid. For the Marangoni number, zero indicates that the effect is absent whereas higher values indicate
an increase in surface tension, as well as temperature. ϕ is set to 0.03 as this specifies the a decent amount
of nanofluid present in the fluid.

Figure 3 and 4 illustrate fluid flow inside the enclosure for three distinct values of Ma for Ra = 103

and Ra = 104 respectively. Observing the streamlines in Figure 3, it can be seen that for all cases, the
strength of the flow increases with Ma. Note that when Marangoni convection is active, the single cell
in most enclosures, aside from BR, splits into two with one concentrated at the top left area. When the
heated cylinder is in the bottom right position, the single cell separates into three but then is reduced back
to one when Ma = 103. This is due to the fluid flow of the dominant cell becoming more intense up to the
point where the weaker one simply vanished. If Ra is then increased, as shown in Figure 4, the eddies swirl
faster, and if Marangoni convection is absent, the number of cells remains the same except for position Mid

and TR where multiple cells start to form. As in the case of Ra = 103, the cell that flows faster moves
to the top of the cavity, though it is smaller compared to the weaker one, except for BR. Figure 5 and 6
show the temperature distribution inside the enclosure. It is clear that as Ma increases, the deformations
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Location Mid BL TL BR TR

Ma = 0

Ma = 102

Ma = 103

Figure 3: Streamlines for Ra = 103

of the temperature contours become much more prominent, especially when the heated cylinder is placed
away from the top and sloped walls. However, if case TR is examined closely, it is observed that heat seems
to be moving upwards to where Marangoni convection occurs as opposed to the rest of where heat moves
to the left side. When Ra = 104, the contours become even more deformed. Note that when the cylinder
is placed in the bottom right section, heat moves to the left and then downwards as Marangoni convection
becomes more intense. Despite observations made of the Marangoni number having an effect on temperature
contours, this does not imply that Marangoni convection will have any significant influence on heat transfer
and for that, the local and average Nusselt will have to be examined. Figure 7 illustrates the behaviour of the
local Nusselt numbers for the heated cylinder. It can be seen that the highest values are obtained by position
TR for all Ma and Ra due to it being close to the cold and top wall. Nuloc also behaves sinusoidally with
the heat transfer rates peaking when θ is just over zero, suggesting that this location is where it is closest to
both the Marangoni and cold wall. The first row of Figure 8 depicts the Nuavg with respect to Ma. It is
observed that the highest values are registered by TR. Note that as Ma increases, the values more or less
remain the same, aside from TL where the heat transfer increases slightly when Ra = 103. Figure 8 also
illustrates Nuavg with respect to ϕ for different values of Ma and Ra. Clearly, the highest heat transfer
rates are obtained by TR and the lowest values are registered by TL. This makes sense as the former is the
farthest away from the Marangoni and cold wall. In general, it can be observed thatNuavg increases linearly
with ϕ for all cases and this shows that the presence of nanoparticles in the fluid has a positive effect on heat
transfer.

3.1 Correlation

Having examined the behaviour of fluid flow and heat transfer under various different parameters, it is de-
sirable to compute the correlation of the average Nusselt number as this helps with estimation without the
need to run multiple simulations. The correlation functions are shown in Table 4 for different positions of
the heated cylinder and Rayleigh number where the Marangoni number is used to evaluate the correlation.
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Location Mid BL TL BR TR

Ma = 0

Ma = 102

Ma = 103

Figure 4: Streamlines for Ra = 104

Table 4: The correlation functions for the average Nusselt number

Position Ra = 103 Ra = 104

BL y = 0.000032 ·Ma+ 1.4941 y = 1.948 exp(−0.00004928 ·Ma)

BR y = 0.000036 ·Ma+ 5.1955 y = 5.6759 exp(−0.000067 ·Ma)

Middle y = 0.000074 ·Ma+ 2.6824 y = 3.0049 exp(−0.0000068 ·Ma)

TL y = 0.000364 ·Ma+ 3.0617 y = 3.456 exp(0.00000109 ·Ma)

TR y = 0.0000917 ·Ma+ 7.1141 y = 7.3166 exp(0.0000006 ·Ma)

The validity of the equations was then checked and the results are presented in Table 5 where the ’Function’
column presents the results using the correlation equations.

Table 5: The correlation functions for the average Nusselt number

Position Ma/Ra Simulation Function

BL Ra = 103,Ma = 250 1.5012 1.5021

BL Ra = 104,Ma = 1000 1.8574 1.8541

BR Ra = 103,Ma = 250 1.8923 1.9235

BR Ra = 104,Ma = 1000 5.3081 5.3081

Middle Ra = 103,Ma = 250 2.7011 2.7018

Middle Ra = 104,Ma = 1000 2.9845 2.9845

TL Ra = 103,Ma = 250 3.1517 3.1527

TL Ra = 104,Ma = 1000 3.4954 3.4939

TR Ra = 103,Ma = 250 7.1385 7.1370

TR Ra = 104,Ma = 1000 7.3574 7.3606
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Location Mid BL TL BR TR

Ma = 0

Ma = 102

Ma = 103

Figure 5: Isotherms for Ra = 103

Location Mid BL TL BR TR

Ma = 0

Ma = 102

Ma = 103

Figure 6: Isotherms for Ra = 104
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Ma/Ra 103 104

Ma = 0

Ma = 103

Figure 7: Local Nusselt for Ra = 103 and Ra = 104 with various values of Ma

Ra 103 104

Ma

ϕ,Ma = 0

ϕ,Ma = 103

Figure 8: Average Nusselt for Ra = 103 and Ra = 104 with respect to Ma and ϕ
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4 Conclusion

A numerical study was conducted to investigate Marangoni convection in a trapezoidal cavity with a heated
circular cylinder. The governing equations and boundary conditions were discretised using the finite element
method and several parameters were varied. The approximate solutions were then presented in the form
of streamlines, isotherms, local Nusselt and average Nusselt. It can be concluded that fluid flow strength
increases with Ra especially after the secondary cell at the top of the enclosure forms. Furthermore, the
highest Nuavg numbers were registered by the cylinder closet to the cold and Marangoni wall and that Ma

does not seem to have a significant effect on the heat transfer rate, especially when compared to Ra. In
addition, the presence of nanoparticles in the base fluid helps improve heat transfer rates.
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Nomenclature

Nomenclature

Greek Symbols

ζ -Parametric term, [-]

α -Thermal diffusivity, [m2s−1]

β -Thermal expansion coefficient, [K−1]

γ -Surface tension gradient, [◦CNm−1]

λ -Wavelength, [m]

µ -Dynamic viscosity, [kgm−1s−1]

ϕ -Volume fraction, [-]

Ψ -Dimensionless stream function, [-]

ψ -Stream function, [m2s−1]

ρ -Density, [kgm3]

σ -Surface tension, [Nm−1]

θ -Dimensionless temperature, [-]

υ -Kinematic visocity, [m2s−1]

Cp -Heat capacity, [JK−1]

Ma -Marangoni number (−L ∂σ
∂T

(Th−Tc)
µfαf

), [-]

Pr -Prandtl number (= µf

ρfαf
), [-]

r -Radius of circular cylinder, [m]

Ra -Rayleigh number (= gβfL
3(Th−Tc)
υfαf

), [-]

T0 -Reference temperature, [◦C]

x0, y0 -Position of circular cylinder, [m]

A -Amplitude, [m]

H,W -Height and width, [m]

k -Thermal conductivity, [W (m ·K)−1]

T -Temperature, [C]

g -Gravity, [ms−2]

P -Dimensionless pressure, [-]

p -Pressure, [Pa]
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U, V -Dimensionless velocity components, [-]

u, v -Velocity in the x and y-direction, [ms−1]

Other Symbols

avg -Average

c -Cold

f -Base fluid

h -Hot

loc -Local

nf -Nanofluid

s -Solid particle
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