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In this paper, we obtained a variable coefficient partial differential model that 
characterizes non-linear long waves with topography effects through the multi-
scale perturbation expansion method, especially the new model caused by the vari-
ation of background shear flow over time. Next, the expansion Jacobian elliptic 
function method is used to provide an analytical solution for the model and analyze 
its wave characteristics.
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Introduction

The non-linear long wave theory has always received a lot of attention in large-
scale atmospheric and oceanic dynamics. In recent years, models such as the Quartic-KdV 
model, ZK-Burgers model, ZK-mZK-BBM equation have been used to characterize such 
non-linear waves [1-4]. In addition these 2-D and 3-D wave models, variable coefficient 
non-linear models will be more suitable for explaining actual atmospheric and oceanic 
non-linear phenomena. Fu et al. [5] derived the extended variable coefficient KdV (VC-
KdV) equation for large amplitude equatorial Rossby solitary wave under an external forc-
ing in a shear flow. A non-local constant coefficient KdV (CC-KdV) equation with shifted 
parity and delayed time reversal is derived and two kinds of non-linear wave excitations 
are presented explicitly and graphically [6]. A variable coefficient Schrödinger equation 
derived from vorticity equation [7]. The aforementioned results show that time-dependent 
variable coefficients affect the amplitude, direction, and velocity of waves which consid-
ered as an important factor leading to the development of the dynamical system.

For partial differential models, some scholars have provided various analytical solu-
tions, including the Solitary and periodic solutions [8, 9], M-lump solution and N-soliton [10]. 
In fact, the models of the solution can be derived as the improved tan-expansion method [11], 
generalized homogeneous balance method [12], and Hirota’s bilinear method [13, 14]. For the 
variable coefficient partial differential mode, the aforementioned method is not suitable, some 
solutions to the variable-coefficient equations are obtained with the help of Jacobi elliptic func-
tions for the non-linear long waves [15]. In this paper, based on the quasi geostrophic potential 
vorticity mode, a new VC-mKdV model for long wave is obtained by using multi-scale analysis 
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and perturbation methods, and we give an analytical solution through the expansion Jacobian 
elliptic function.

The derivation of variable coefficient mKdV model

Firstly, the quasi-geostrophic model with topographic effect is given [16]:
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where β(y) is the variable with beta effect of linear variation with dimension in Coriolis force, 
and the side boundary condition in dimensionless form is:
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Taking the base flow as the shear zonal flow:

0
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where u(y, t) is the time-varying shear fundamental flow, which corresponds to the phase veloc-
ity of a linear long wave in the shear fundamental flow, equivalent to doing the transformation x = x – c0t, 0 < ε ≪ 1, and κ – the detuned parameter and the total stream function is:

0
0

( , , ) [ ( , ) ]d ( , , )
y

x y t u y t c y x y tεκ εψΨ = − − + +∫ (4)

where ψ(x, y, t) is the disturbed stream function. Substituting eq. (4) into eq. (1) combined with 
the boundary condition eq. (2), we obtain the equations about the perturbed stream function:
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Considering that u is the background flow, and u(y, t) is slowly varying about time, t, 
which can be set:

( , ) ( ) ( ), 0 1u y t u y u tδ δ= + <  (6)
We perform G-M transformation on the variable x, t, X = ε1/2x, T = ε3/2t, and in order to 

balance the non-linear effect in the equation with the dispersion effect:
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We set δu(t) = εu(T), and substitute eqs. (6) and (7) into eq. (5):
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We perform a small parameter expansion on the disturbed stream function:
2

1 2 3( , , ) ( , , ) ( , , )X y T X y T X y Tψ ψ εψ ε ψ= + + + (9)
Substituting eq. (9) into eq. (8), we obtain the expression for ε from low to high order:
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Let ψ1 = A(X, T)ϕ1(y) satisfy the eigenvalues:
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In general:
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in order to determine the amplitude A(X, T), we also have to solve the higher order problem for 
the case of order ε5/2, e.g.:
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Along the same lines ψ2 = B(X, T)ϕ2(y), and with:
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we ultimately simplified from eqs. (11) and (13) to:
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We get:	
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Finally, we obtain:
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Equation (16) degenerates into the KdV equation without the latitudinal background 
flow change slowly with time u(T):
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As is well known, the traveling wave solution of eq. (18) is:
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where B0 = 3ca/a1, ca is the wave speed of the traveling wave in a slowly varying space time. If 
there is a stable solitary wave, we can obtain a1a2B0 > 0, when a1a2 > 0, we can get B0 > 0, the 
system exists peaked solitary wave, and vice versa, there is a trough waveform, then a2 and ca 
have the same sign, according to the coefficient
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in eq. (11), in the northern hemisphere mid-latitude sea, if there is no shear in the background 
current or the shear is not too strong
 	 ( ) 2( ) ( ) ( ) 0, so that 0y y u y h yyβ β α′ ′ ′′+ − + > <

it can be judged that the solitary wave has the characteristic of propagation the westward prop-
agation.

In order to explore the fluctuation solution of eq. (16), it is observed that the coeffi-
cient u(T) of this u(T)(∂A/∂X) is a function of time, and considering u(T) as a generalized func-
tion, we solve it by the method of variable coefficients Jacobian elliptic functions. Let:
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where f(T), g(T) are the undetermined coefficients of the independent variable t, according to 
the balance between the non-linear term and the highest order term, the solution is obtained in 
the form:
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We substitute eqs. (20)-(21) into eq. (16) to obtain an expression for the coefficients 
γ0(T), γ1(T), γ2(T):
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	 We obtain the values of coefficients through a system of algebraic equations γ0 = r0,  
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where r0, k0 are constants.
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Conclusions

In the barotropic Earth fluids, we derive a variable coefficient mKdV model that char-
acterizes non-linear long waves. The time-varying shear flow can affect the linear term of the 
model. In addition, topography is one of the factors that excite non-linear waves, and topogra-
phy can change the wave crest (trough) shape of way.

Next, we use the extended Jacobian elliptic function method to calculate the vari-
able coefficient partial differential mode and obtain its theoretical solution. If the u(T) term is 
ignored, the solution can degenerate into the standard previous study. Finally, the analytical 
solution of the equation helps us explain the dynamic phenomena in the ocean, which will be 
further explored in future research.
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Nomenclature
t 	 – time, [s]					     x, y, z – co-ordinates, [m]
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