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A local fractional modification of the Duffing equation is considered, and the 
homotopy perturbation method is employed to reveal its frequency-amplitude re-
lationship, which is of paramount importance in the optimal design of the energy 
harvesting devices and chatter detection. Effects of the initial conditions on the 
periodic property is also discussed.  
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Introduction 

Duffing equation is a ubiquitous model for non-linear vibration systems [1-4] be-

cause many complex vibration problems can be finally simplified to the well-known Duffing 

equation or its modification. A nano/micro beam vibration plays an import role in engineering 

applications [5-7] and micro/nano electromechanical systems [8-13], furthermore a vibration 

system can be used for analysis of the energy harvesting efficiency [14-16], and thermal prop-

erty of the cocoon-like porous medium [17]. In literature, Duffing equation has been widely 

used as a good paradigm for verification of some an analytical method, e.g., the fractional re-

sidual method [18], the variational iteration method [19, 20], the variational approach [21], 

the homotopy perturbation method [22, 23] and its various modifications [24, 25], and He’s 

frequency formulation [26-31]. 

In this paper, the homotopy perturbation method [22, 23] will be applied to reveal 

the frequency-amplitude relationship of Duffing equation with local fractional derivatives 

[32-34], and its application to energy harvesting will be discussed.  

Preliminaries of local fractional calculus  

In this section, we introduce some mathematical preliminaries of the local fractional 

calculus theory in fractal space for our subsequent development. 

Definition 1. Suppose that there is [32, 33]: 

 0( ) ( )u t u t    (1)
 

with 0 ,t t   for , 0    and , R   , then u(t) is called local fractional continuous at  

t = t0 and it is denoted by lim u(t) = u(t0). 

–––––––––––––– 
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Definition 2. Suppose that the function u(t) is satisfied the condition (1) for  

t Î (a, b), it is called local fractional continuous on the interval (a, b), denoted by [32, 33]: 

 ( ) ( , )u t C a b  (2) 

Definition 3. In fractal space, let u(t) Î Cα(a, b), the local fractional derivative of 

u(t) of order α at t = t0 is given by [32, 33]:  
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where 0 0[ ( ) ( )] (1 ) [ ( ) ( )].u t u t u t u t          

Definition 4. Let the function u(t) satisfied the condition (2), the local fractional in-

tegral of u(t) of order  in the interval [a, b] is defined by [32, 33]: 
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where 1 ,j j jt t t    1 2max , , ,... ,jt t t t     and 1[ , ],j jt t   0,..., 1,j N  0 , ,Nt a t b   

is a partition of the interval [ , ].a b   

Homotopy perturbation method for local fractional Duffing equation 

A non-linear vibration system with local fractional derivatives [32, 33] can be gen-

erally written in the form: 
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where A and B are constants and g is a non-linear restoring force and g(u)/u > 0.  

When g(u) = au + bu3, we have the local fractional Duffing equation: 

 
2

2

3 0
d ( ) d (

,
0)

, (0)
d d

u t u
uau bu A B

t t

 

 
      (6) 

When α =1, eq. (6) was studied in [35], and the fractal modification of the Duffing 

equation was given in [36, 37]. The physical explanation of the local fractional calculus was 

given in [38-40], and the fractional order is relative to the two-scale fractal dimensions  

[41-43], and can be calculated by He-Liu fractal dimension formulation [44].  

In order to illustrate the process of the Homotopy perturbation method [22, 23], we 

explore the following Homotopy equation [22, 23]: 
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d
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u t

t
p au bu u




       (7) 

where  is a homotopy parameter. When p = 0, eq. (7) is a linearized one with a frequency of 

,  and when p = 1, eq. (7) becomes eq. (6). There are other approaches to construction of a 

needed homotopy equation for a special non-linear equation, details were discussed in [44-46]. 

Following what is requested by the Homotopy perturbation method [22, 23], we as-

sume: 

 2
0 1 2    ...u u pu p u     (8) 
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Equation (7) is decomposed into a series of linear equations. The first two linear dif-

ferential equations are: 
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and 
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Solving eq. (9), we can get the solution: 

 0( ) cos ( )u t C t 
     

 (11) 
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where cos t  and arctan t  are, respectively, modified functions of cos(t) and arctan(t) in the 

local fractional sense [32, 33]. Now eq. (10) becomes: 
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After a simple calculation, eq. (13) becomes: 
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In order to be a periodic solution of 1u , the coefficient of cos ( )t   must be zero, 

that is: 
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Solving   from eq. (15) results in: 
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or 
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That is: 
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Now eq. (13) becomes: 
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The solution of eq. (19) is: 
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     (20)

 
The approximate solution is: 

 +
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where   is given in eq. (18). 

The approximate period can be calculated: 
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When 1,  our result is same as that in [35]. In order to obtain higher order approx-

imations, we expand the coefficient of the linear term in the form [45-47]: 

 2 2
1 2    ...a pp       (23) 

Following the solving process of the homotopy perturbation method [45-47], we 

have: 
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and 
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Solving u0 and u1 from eqs. (24) and (25) respectively, we have: 

 0( ) cos ( )u t C t 
     (27) 

where 
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And 1  is obtained in a similar way: 
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4
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Now eq. (26) becomes: 
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That is: 
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The coefficient of cos( )t  in eq. (31) has to be zero, that is: 
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The solution of eq. (31) is: 
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The second-order approximate solution is: 
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where u0, u1, and u2 are given, respectively in eqs. (27), (28), and (34).  

The frequency can be calculated according to eq. (31): 
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where 1  and 2 are given, respectively in eqs. (29) and (33), so we have: 
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Finally, we obtain: 
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Equation (40) shows that the frequency depends upon strongly the initial conditions.  

Vibration energy harvesting 

The vibration energy harvesting [48-50] is to convert the vibration energy to electri-

cal energy, and the frequency property of the transducer plays an important role in the energy 

harvesting efficiency [14-16]. Equation (22) shows the amplitude-period relation, it is obvious 

that a low frequency leads to a large amplitude. The low-frequency property [37, 51, 52] af-

fects greatly the energy harvesting efficiency. Equation (22) also reveals that the initial condi-

tions also affect the frequency property. Forced vibrating systems were discussed in [53], and 

when g(u) in eq. (1) involves even non-linear term, the pull-down instability [54] has to be 

considered. 

The chatter signal during the machining process can be also described by a fractal 

vibration system, and it has obvious advantages over the fractional convolutional neural net-

work [55] and deep learning system or machine learning technology [56, 57].  

Conclusion 

In this paper, the approximate frequency of Duffing equation with the local fraction-

al derivatives is given by the homotopy perturbation method, which is proved to be an un-

precedented and powerful method for the local fractional calculus. The effect of the initial 

conditions on the periodic property is also elucidated, eq. (22). The frequency-amplitude rela-

tionship gives a fast and effective insight into the periodic property of a local fractional vibra-

tion system, and it can be used for the optimal design of the energy harvesting devices and 

chatter detection of machining process.  
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