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A prediction of rod wave type with great precision is extremely important in theo-
retical analysis and practical applications. Besides the well-known periodic mo-
tion and resonance, this paper studies the rod wave in a fractal space, and a frac-
tal solitary wave is unlocked by the variational approach, the results reveal that 
the rod strain non-linearity and fractal dimensions affect greatly the wave travel-
ling properties. This paper offers a new window for identifying a solitary wave 
from periodic motion easily and accurately.  
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Introduction  

It has become a hot topic to identify exactly the wave types of a non-linear elastic 

rod in academy in recent years [1-5]. Zhuang and Yang [6] used the inverse dispersion meth-

od to study the physical performance of the 1-D weak non-linear long rods. Han and Zheng 

[7] considered the 3-D non-linear elasticity constitutive relation, and further studied the mo-

tion of the 1-D non-linear rod and derived the KdV-mKdV equation. Taking the material con-

stant n = 2, Hu et al. [8] provided a numerical simulation of the wave equation of the non-li-

near elastic rod by the polysymplectic method, discussing the effects of the non-linear effect 

and the geometric dispersion effect on the solitary wave propagation. Guo et al. [9] took the 

material constant n ≥ 2 and transformed the wave equation into the deformed KdV equation 

by using the reduction perturbation method. Kabir [10] took the material constant, and ob-

tained the exact solution of the wave equation by using the modified Kudryashov method, the 

G′/G expansion method, and the exp-function method. Celik et al. [11] took the material con-

stant to obtain the exact solution of the wave equation by using the Lie group analysis method 

and the F-expansion method. Guo et al. [12] applied the sine-cosine method to the wave equa-

tion of the non-linear elastic rods to obtain some new periodic and isolated solutions of the 

equation (the material constant n ≠ 1). Ji et al. [13] elucidated that the solitary wave of a con-

crete pillar can be used for reliability and safety design of a bridge or a building. In this paper, 

we will study the solitary wave in a fractal space arising in a rod vibration.  
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The KdV-mKdV equation related to strain  

in non-linear elastic rods 

As shown in fig. 1, it is a non-linear infinite-long homogeneous, constant section 

circular rod with a line mass of ρl and a radius of R, and the column coordinate system (r, θ, x) 

is also introduced. According to [7], we assume that the rod is subjected to a sudden axial ten-

sile load, the assumption of a flat section is still valid, and the following basic assumptions are 

made during the derivation of the motion equation:  

– During the loading process, the infinitely long rod is in a uniaxial stress state, the expres-

sion is σr = σθ = 0,  where σr and σθ represent radial and circumferential stresses, respec-

tively.  

– Consider the influence of lateral effects on deformation, it means that εr = –νεx. Mean-

while, using geometric equations, it is easy to obtain ur = rεr = –νr∂u/∂x, where ν is the 

Poisson's ratio, εr and εx represent radial and axial strain, respectively, ur and u represent 

radial and axial displacement, respectively.  

– Assuming that the material follows a non-linear elastic constitutive equation: 
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where the first term in the equation represents linear elastic stress and the remaining terms 

represent non-linear elastic stress, E is the elastic modulus, αi and n are the material constants. 

 

Figure 1. Non-linear infinite rod 

Taking into account the transverse effect, the kinetic energy per unit length of an 

elastic rod is the sum of the longitudinal kinetic energy and the transverse kinetic energy [7]: 
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where S = πR2.  

Based on the assumption of uniaxial stress, the elastic rod strain energy per unit 

length is: 

 

 2 1

2 20 0 0

1 1
d 2π d d

2 1

iR n n
i

x i x x i

i i

u u
W r r S E E SE SE

x i x

 

      



 

        
                    

     (2) 

Utilizing Hamilton variational principle [14, 15], 
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make F = T – W, and obtain: 
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The Euler equation is: 
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The longitudinal wave motion equation of the non-linear elastic rod considering the 

lateral effect is obtained: 
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where 2
0 / ,lc E  is the longitudinal wave velocity. Making n equal to three and substituting it 

into eq. (5), we can obtain: 
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Then we make:  
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and perform the following transformation: 

 0 ,  =x c t t     (7) 

Substituting eq. (7) and α′, β′, and μ′ into eq. (6), we can obtain: 
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Then we make the following changes: 
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Based on the previous transformation, eq. (9) can be simplified: 
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When t = 1/(3α3), eq. (10) can be converted to: 

 
3

2 2 3

3
0y y yyy

D D D
e ee e e e e e e e

Dy Dy Dy
                (11) 

where 
2 2

02

2
3 0 33 0

1 2 2
, , , ,

3 3 33

cR u
y x e

cc

 
   

  

  
        

 
 

is the strain in the rod, eq. (11) is the strain dependent KdV-mKdV equation in a non-linear 

elastic rod. 
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Integrate both sides of eq. (11) at the same time, and take the constant of integration 

as zero: 
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Equation (12) is a non-linear equation with quadratic non-linear term [16], and its 

periodic solution can be obtained via various methods [17-23]. This paper focuses itself on 

prediction of a new type of solutions in a fractal with great precision.  

Fractal KdV-MKdV equation and solitary wave solution 

The previous derivation is obtained by assuming a continuum rod or a smooth 

boundary. During the machining process, a rod moves actually along an unsmooth boundary, 

and the traditional vibration theory can not take into account the unsmooth boundary. Kou, 

et al. [24, 25] used the fractional convolutional neural network to predict the chatter vibration 

accurately. When air is considered as a fractal medium, by suitable controlling the fractal di-

mensions, the pull-in instability of a micro-electromechanical system can be eliminated  

[26-29]. Now the fractal vibration theory [30-33] and fractal solitons [34-38] become hot top-

ics in both mathematics and engineering due to the amazing properties of the fractal vibration 

systems, for example, the low frequency property at the initial stage and the asymptotic perio-

dicity.  

Hinted by the cited literature, we extend eq. (12) into the fractal-fractional one: 
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where μ represents the two-scale fractal dimensions [39, 40], ( )HD Dy e
is He’s the fractal 

derivative with respect to yμ [41-43]. 

Here we want to establish a variational formulation for eq. (13), so that the basic 

properties of the fractal soliton can be clearly elucidated. In 2021, He, et al. [44] suggested a 

variational approach to the fractal solitons with great success, following [44], Sun [45] studied 

the fractal solitary waves for Ablowitz-Kaup-Newell-Segur water wave and Klein-Gordon 

equation [46] with great success.  

The variational principle of eq. (13) can be established by the semi-inverse method 

[47]: 
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The Euler-Lagrange equation of eq. (15) can be described: 
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The semi-inverse method [47] has its own unique approach to search for a variation-

al formulation from the governing differential equations [48-52]. 

From eq. (16), we can obtain He-Weierstrass function [53]: 
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where the variable z is defined: 

 
H

De
z e

Dy
  (18) 

From eq. (17), it is obvious that:  
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Equation (19) indicates that eq. (15) is a minimal variational principle.  

Then, we assume the solution of eq. (13) is [44]: 
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where p is conversion rate. Substituting eq. (20) into eq. (15), we obtain:  
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According to the previous equations, we have: 

 

2 29π (1 2 ) 5123π(1 2 )

16 24
p

k

 



 
    (23) 

So the solution of eq. 13 can be obtained:  
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To sum up, we obtain the instantaneous solution of the strain dependent KdV-mKdV 

equation for non-linear elastic rods in the fractal dimension: 
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When 1,   eq. (25) can be transformed into eq. (26):  
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Equation (26) is the instantaneous solution of the strain dependent KdV-mKdV 

equation for non-linear elastic rods in a smooth space. 

Effect of the fractal dimensions on the solitary wave 

Without losing the generality, we only consider the following situations:  
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Based on the assumptions made earlier, we set α2 – 1, α3 – 2, 1/6,    1/3,   
0.21,   R = 2.5 mm, c0 = 21.37 mm/s, κ = 0.792 × 10–4, by substituting these parameters in-

to eq. (27), we can obtain: 

 ( ) 99.116 65.831sech(0.094 0.667)e x x      (28) 

Figure 2 represents eq. (28) with different 

fractal orders. By comparing the simulation re-

sults, we can obtain that the fractal order only 

affects the waveform and the position of the 

peak, and when x = 1.07, the strain calculated 

by different fractal dimensions is same. 

Conclusion 

This article presents the derivation of the 

strain-dependent KdV and mKdV equations in 

a non-linear elastic rod under specific assump-

tions. Additionally, we have obtained its frac-

tal form based on He's fractal derivatives. Sub-

sequently, we have proved the minimum varia-

tional principle based on the He-Weierstrass 

function. Using this principle, we are able to 

obtain the instantaneous solutions under varia-

ble fractal dimensions. We find that the fractal order only affects the waveform and the po-

sition of the peak, while exact prediction of the peak position is extremely important to 

guarantee its reliable operation and to monitor its safety.  

 

Figure 2. The instantaneous solution of the 
strain dependent KdV-mKdV equation for  
non-linear elastic rods with different fractal 
orders 
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